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Abstract

The strategic context of bureaucratic advice to policymakers often takes the form
of a disclosure game in which the relevant bureaucracy has an ideal policy interior
to the policymaker’s action space. We characterize conditions under which this game
has sequential equilibria in which the sender adopts a non-monotonic disclosure strat-
egy, implying partial disclosure. Further, multiple sequential equilibria exist under
some conditions, including a fully revealing equilibrium and multiple partially reveal-
ing equilibria that vary in extent of disclosure. We show that these equilibria are
strictly rankable both by actors’ welfare and by their robustness to belief perturba-
tions. Further, for sender preferences that are sufficiently close to the expected value
of the state, (1) the most robust equilibrium is partially revealing and (2) set of states
that the sender discloses becomes larger as the divergence in sender’s and receiver’s ex
ante preferences increases.

1 Introduction

Effective policy-making requires expert information, for which policymakers must often rely
on bureaucratic agencies. Because agencies have their own policy preferences, the problem
of strategic disclosure – how to effectively motivate agencies to disclose information available
to them without undermining policy-making – is a first-order concern in understanding
incentives in policy-making.

While the literature on disclosure has developed important insights that shed light on
the strategic logic of disclosure, existing models of disclosure assume away a crucial feature
present in many settings: experts/agents/bureaucrats have an ideal action they would like
to see implemented. Indeed, in many instances, these ideal actions are state-independent –
for example, bureaucrats are often described as being strongly biased in favor of the status
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quo (not the least, because they are often residual claimants on costs of policy changes –
see Kaufman (1981); McCarty (2004)). The presence of ideal actions belies the standard
motivating examples of the disclosure literature, in which the sender always wants a higher
action (e.g., selling more cars).

We study a model of disclosure that departs from the Milgrom (1981) canonical setting
in focusing on senders with such preferences. We show that it generates a host of predic-
tions that substantially depart from the conventional prediction of the “unraveling” logic of
disclosure whereby an informed agent has an incentive to disclose her information to avoid
the decision-maker inferring the worst possible state from non-disclosure (Grossman, 1981;
Milgrom, 1981). While the studies of disclosure have consistently assumed monotonicity of
sender preferences, we show that what the unraveling result needs is a sender with a most-
preferred action that is sufficiently far from the expected value of the distribution of states.
Monotonicity is not necessary for the existence of the full-disclosure equilibrium, but given
non-monotonicity, if the sender’s most-preferred action is within a specified interval around
the expected value of the state, that can fundamentally change the nature of disclosure.
Specifically, it can give rise to equilibria in which unraveling stops before being complete.
We delineate two types of partial disclosure equilibria that can be sustained in such a case:
the guarded equilibrium, where the sender reveals relatively less information, and the ex-
pansive equilibrium, where it reveals relatively more. We show that only guarded and the
full disclosure equilibria are belief-stable in the sense of robustness to small perturbations in
players’ beliefs, and that, as the ideal action of the sender moves close to the expected value,
the extent of such robustness is highest in the guarded equilibrium. Starkly, our analysis
demonstrates that in this equilibrium, disclosure increases with ex ante preference divergence
between the sender and the receiver, contrasting sharply with the canonical prediction on
the effects of preference divergence on communication in the cheap-talk signaling context.

The rest of the paper is organized as follows. In Section 2, we present an illustrative
example that helps motivate our theoretical framework. Section 3 formalizes the model
and characterizes the equilibria under different conditions. Section 4 discusses the concept
of belief-stable equilibria and its implications. In Section 5, we extend our analysis by
generalizing to broader settings and explore the robustness of our results. Section 6 develops
the core idea in several directions, including in the context with direct disclosure-contingent
benefit to the sender.

2 Connection to the Literature

A key result in the communication games with verifiable messaging is that all private in-
formation is revealed in equilibrium (Grossman (1981), Milgrom (1981), Milgrom (2008)).
Following the initial formulation of this result, subsequent works have studied conditions
under which the unraveling logic of full disclosure remains intact in a variety of formal and
substantive environments. An important review of the disclosure games literature to-date
in Milgrom (2008). A key lesson from this literature has been the general robustness the
unraveling prediction.

To create the possibility for equilibrium non-disclosure, the sender must not be fully
informed (Dye (1985), Jung and Kwon (1988), Shin (1994)). Alternatively, the receiver
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must be uncertain about sender’s preferences (Wolinsky (2003), Dziuda (2011)). Callander,
Lambert and Matouschek (2021) find that incomplete disclosure can also be supported in
a (stylized multi-dimensional) setting in which the sender can not only provide a direct
recommendation but also referential information that can influence the decision-maker’s
beliefs about other options.

The analysis of the incentives to disclose has focused on settings where the sender’s reve-
lation is monotonic in the state. In contrast to the preference for always “higher” or always
“lower” policies (e.g., selling more cars in Milgrom’s seminal example), preference satiation,
which corresponds to interior ideal points on the range of possible policy alternatives, makes
it possible to have interior boundaries on revelation intervals and non-monotonic revelation
preferences, which we show to be supportable in equilibrium. Preference satiation is a stan-
dard feature of preferences in political economy contexts, which often work with the spatial
model of preferences, where they are represented as ideal points. Seidmann and Winter
(1997) provide a generalization of Milgrom’s classic setting to environments with objective
functions that are concave in actions. The key assumption in their study is that sender’s
utility is more state-dependent than the receiver’s – the opposite of the assumption we main-
tain in this paper. Denisenko, Hafer and Landa (2024) study the transmission of verifiable
information from an unbiased sender with a fixed and known ideal point, and focuses on the
effects of sender competence on information transmission.

Delegation and communication within hierarchies is a focus of a substantial body of polit-
ical economy scholarship (for reviews, see Gailmard and Patty (2012) and Sobel (2013)). The
dominant approach to modeling communication in this literature has been as “cheap talk”
in which bureaucrats’ potential messages are not directly constrained by their information
(Crawford and Sobel (1982); Gilligan and Krehbiel (1989); Austen-Smith (1990); Austen-
Smith (1993)). A key comparative static result that is at the core of this literature is the
opposite of what we provide below for the setting with verifiable messaging – viz., that di-
vergence in the actors’ preferences curtails communication, and successful communication at
all occurs only when the advisor’s and the policymaker’s preferences are sufficiently aligned.
An important exception is Callander (2008), which studies an expert bureaucrat’s advice to
a legislator in an environment in which the bureaucrat’s expertise is endogenously acquired
and the legislator may not be able to fully recover the bureaucrat’s private information from
the advice. Callander shows that, in the absence of an institutionalized commitment to im-
plement the received advice, greater divergence in primitive preferences between bureaucrat
and legislator sometimes induces greater voluntary delegation of policy-making powers from
the legislator to the bureaucrat. This suggests a certain affinity with our result that greater
preference divergence spurs more information disclosure. The mechanisms producing these
results are, however, very different. (Battaglini (2002) and Aybas and Callander (2023) iden-
tify policy-relevant settings in which cheap-talk communication fully favors, respectively, the
receiver, and the sender.)

3 Uniform Prior and State-independent Preferences

We begin with a relatively simple setting that illustrates the key features of equilibrium
results. We later generalize the model with respect to both the distribution of the state and
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the functional form of utilities.
Assume there is an Agency and a Policymaker, where the Agency possesses information

relevant to the Policymaker’s current political agenda. The Agency has discretion over
whether to share this information with the Policymaker, who then chooses a policy p ∈ R
based on the received message. The Policymaker aims to implement a policy p that aligns
with the true state of the world, ω. When the Agency discloses information, it does so
truthfully.

The Policymaker’s utility function is

uP (p) = −(ω − p)2.

Thus, the Policymaker’s objective is to set policy p = ω. We begin with a simplified model
where the Agency’s preferences are state-independent; its utility is maximized when the
implemented policy matches its most preferred policy, denoted by i. This allows us to
isolate the key mechanisms before generalizing to state-dependent Agency preferences. The
Agency’s utility function is

uA(p) = −(i− p)2.

Note that while i captures only the Agency’s preferences, the absolute value |i| measures
the divergence in the two actors’ ex ante preferences. The Policymaker’s ex ante preferred
policy is p = E[ω], while the Agency’s is p = i, with the distance between these reflecting
the alignment of their preferences.

The state of the world, ω, is drawn from a continuous distribution with cumulative
distribution function (cdf) F (·) and probability density function (pdf) f(·) over a support
Ω. For initial tractability and clarity of exposition, in the special case we assume ω is
uniformly distributed on Ω := [−1, 1], i.e., f(ω) = 1/2 for ω ∈ [−1, 1] and zero otherwise.
The Agency observes ω and decides whether to disclose it to the Policymaker. The Agency’s
information is verifiable and it can send one of two messages: m ∈ {ω,∅}. The message
m = ∅ is commonly understood to be not intrinsically informative.1

The timing of the game is as follows:

1. Nature draws the state of the world ω.

2. The Agency observes ω and chooses a message m.

3. The Policymaker observes m and selects a policy p ∈ R.

Let µ : Ω → [0, 1] represent the Agency’s disclosure strategy, where µ(ω) is the probability
the Agency discloses state ω. The Policymaker’s beliefs, conditional on observing message
m, are represented by the pdf β. Consistent with verifiable information, β(ω|m = ω) = 1
and β(ω|m = ω̂ ̸= ω) = 0. From Bayes’ Rule,

β(ω|∅;µ) =
(1− µ(ω))f(ω)∫

Ω
(1− µ(ω̂))f(ω̂)dω̂

.

1The Agency’s message space is restricted, excluding vague but truthful messages, which provides the
most challenging setting for our results, as we discuss later.
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The Policymaker’s optimal strategy p∗ : Ω ∪ ∅ → R maximizes the Policymaker’s utility
given her beliefs conditional on m.

The following lemma summarizes the Policymaker’s optimal policy-implementation strat-
egy:

Lemma 1. The Policymaker’s optimal policy p∗(m) is

p∗(m) =

{
m if m ̸= ∅,

E[ω|∅;µ∗(.)] if m = ∅,
(1)

where µ∗(.) denotes the Policymaker’s conjecture about the Agency’s disclosure strategy.
The Agency discloses its information to the Policymaker when withholding it would result

in a policy farther from the Agency’s preferred policy than the one the Policymaker would
implement if fully informed about the state. The following lemma describes the Agency’s
optimal disclosure strategy, given the Agency conjectures that the Policymaker’s strategy is
of the form specified in Lemma 1, with x := p∗(∅).

Lemma 2. The Agency’s optimal disclosure strategy is

µ∗(ω) =

{
1 if ω ∈ M(x, i),

0 if ω ∈ N(x, i),
(2)

where M(x, i) := [i−
√
(x− i)2, i+

√
(x− i)2] ∩ Ω and N(x, i) := Ω\M(x, i).2

Although some signals are never disclosed, the Policymaker infers in equilibrium that
when she receives m = ∅, the state fell outside the disclosure interval, and she updates her
beliefs about the state absent disclosure accordingly. In every equilibrium, after observing ω,
the Agency follows an optimal disclosure strategy µ∗(ω), anticipating that absent disclosure
the Policymaker will select the optimal policy, denoted

x∗ := E[ω|∅;µ∗(.)].

In the next proposition, we characterize all disclosure strategies supported in Sequential
Equilibrium (SE); for the remainder of the paper, “equilibrium” will mean Sequential Equi-
librium.

Proposition 1. 1. For all i ∈ Ω, a full disclosure strategy can be supported in equilibrium,
with x∗ = xF and the disclosure interval M(x∗, i) = Ω, where

xF :=

{
1 if i ≤ 0,

−1 if i ≥ 0.

2Both m = ω and m = ∅ are optimal if ω = i −
√
(x∗ − i)2 or ω = i +

√
(x∗ − i)2. Henceforth, we will

assume the Agency discloses when indifferent, with no substantive effect on our results.
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2. For i ∈ [−1
4
, 1
4
], two partial disclosure strategies can be supported in equilibrium, with

x∗ ∈ {xE, xG} and the disclosure interval M(x∗, i) ⊂ Ω, where

xE :=
1

2

(
2 · i− sign(i)− sign(i) ·

√
1− 4 · |i|

)
;

xG :=
1

2

(
2 · i− sign(i) + sign(i) ·

√
1− 4 · |i|

)
.

Proof. See Appendix.

Figure 1: Agency’s disclosure boundaries in fully revealing, guarded, and expansive equilibria as a
function of Agency’s ideal point i.

We will, for convenience, adopt the following terminology for this special case. We refer to
the partial disclosure strategy characterized by xE as the expansive disclosure strategy, and
the partial disclosure strategy characterized by xG as the guarded disclosure strategy. We
term the equilibria in which these strategies are employed as the expansive partial equilibrium
and the guarded partial equilibrium, correspondingly. This nomenclature is motivated by
the difference in the extent of information revelation across equilibria: the Agency discloses
a strictly broader set of states in the expansive equilibrium than in the guarded equilibrium.
This feature is visually represented in Figure 1, which juxtaposes all equilibrium disclosure
boundaries. As the figure demonstrates, the guarded disclosure interval is nested within the
expansive disclosure interval, which, in turn, lies within the full disclosure interval for all
values of i.3

The nestedness of the disclosure strategies has a direct implication for the Policymaker’s
welfare, summarized in the following corollary.

3While the nestedness of equilibrium disclosure sets is maintained across different prior distributions, the
existence of at most two partial disclosure equilibria is a consequence of the uniform prior assumption.
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Corollary 1. For any given Agency’s ideal point i, the Policymaker’s ex ante expected utility
is highest when there is full disclosure in equilibrium and lowest in the (partial disclosure)
guarded equilibrium.

The Policymaker trivially prefers more disclosure to less, and the full disclosure equips the
Policymaker with complete information about the state, letting her select policies tailored
best to her preferences. In contrast, partial disclosure leaves the Policymaker with residual
uncertainty, leading to suboptimal policy choices and reduced utility. The welfare loss is
larger when disclosure is smaller and, therefore, Policymaker’s utility is lowest under the
guarded equilibrium.

Proposition 1 establishes that for any given ideal point i, there are at most three pure-
strategy equilibrium profiles. We now argue that mixed strategies are not sustainable in any
equilibrium. For any state realization ω, and conditional on the policy implemented in the
absence of disclosure, the Agency has a strict preference for disclosing states that produce a
policy closer to its ideal point. Probabilistic disclosure is therefore never incentive compat-
ible. Similarly, the Policymaker’s optimal policy choice is also restricted to pure strategies.
Were the Policymaker to randomize across policies following non-disclosure, this would in-
duce a change in the agency’s optimal disclosure interval. However, given any disclosure
interval chosen by the Agency, there exists a unique optimal policy for the Policymaker
in the absence of disclosure that constitutes a best response. Thus, neither player finds it
optimal to employ mixed strategies in equilibrium.

As Figure 1 illustrates, partial disclosure is non-monotonic in realized states of the world.
It is this non-monotonicity that prevents full unraveling: The Agency’s unwillingness to
disclose signals both too high and too low, relative to i, ensures that policy absent disclosure
is not too extreme. Consequently, since the expected state conditional on non-disclosure is
not too extreme, the Agency optimally chooses to withhold some states on either side of its
ideal point.

The unique equilibrium where disclosure is monotonic in realized states and full, is the
equilibrium where the Policymaker chooses policy xF absent disclosure. Proposition 1 estab-
lishes sufficient and necessary conditions for full disclosure to be the unique equilibrium of the
game. Specifically, when Agency’s ideal point i, is sufficiently far from the mean of the prior
distribution (or, alternatively, when ex ante preference divergence |i| is sufficiently high) ,
the unique equilibrium involves full disclosure. Conversely, when i lies within the interval
[−1

4
, 1
4
] (when |i| < 1

4
), multiple equilibria exist, including those with partial disclosure.

Further, at i = 0, the Agency’s optimal disclosure strategy is symmetric around zero,
and any lack of disclosure should indicate to the Policymaker that the optimal policy in the
absence of information is equal to the mean of the prior distribution. Yet, the Policymaker’s
beliefs about the average concealed state in both expansive and full equilibria are different
from zero at i = 0. Full disclosure becomes possible in these cases because the Policymaker
forms extreme beliefs, leading her to implement an extreme policy (−1 or 1) absent disclosure,
thereby encouraging the Agency to fully disclose information, reinforcing the Policymaker’s
beliefs.

Note that as |i| approaches zero, the Agency’s incentives to disclose or withhold infor-
mation become increasingly symmetric around the mean of the distribution of states. The
Agency, being indifferent between right-leaning and left-leaning policies, does not prioritize
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the disclosure of one over the other. Thus, all else equal, as |i| converges zero, the expected
state in the absence of disclosure should converge to the mean of the prior distribution (zero),
following the Agency’s optimal strategy as established in Lemma 2 (with the Policymaker’s
strategy, x, held constant). While this anticipated state convergence is sustained in the
guarded disclosure equilibrium, this comparative statics fails in equilibria characterized by
xF or xE absent disclosure. In these latter cases, as the Policymaker continuously updates
her beliefs about the state expecting the Agency to disclose (weakly) more information as
preference misalignment decreases, this belief becomes self-reinforcing, realizing in greater
disclosure from the Agency.

3.1 Comparative Statics

In this section, we examine how the game’s parameters affect the players’ decisions and the
resulting outcomes. Our first result details how the Agency’s ideal point, i, impacts the
Policymaker’s beliefs and choices in the absence of disclosure:

Proposition 2. Increasing i, the difference between the Agency’s ideal point and the Poli-
cymaker’s ex ante expected ideal point,

1. has no effect on the policy implemented in the case of nondisclosure x∗ = xF , given
i ̸= 0, in the full disclosure equilibrium;

2. decreases x∗ = xG on i ∈ [−1
4
, 1
4
] in the guarded disclosure equilibrium; and

3. increases x∗ = xE on i ∈ (−1
4
, 0) ∪ (0, 1

4
) but discontinuously decreases it at i = 0 in

the expansive disclosure equilibrium.

Proof. See Appendix.

Figure 2 illustrates the policy chosen by the Policymaker in the absence of disclosure,
as a function of the Agency’s ideal point i, across the three equilibria: the guarded disclo-
sure equilibrium, the expansive disclosure equilibrium, and the full disclosure equilibrium.
Notably, the comparative statics for the guarded and expansive equilibria present a stark
contrast: the equilibrium policy absent disclosure decreases in the Agency’s ideal point i in
the former, while it increases with i (for i ̸= 0) in the latter.

We, next, characterize the impact of ex ante preference divergence |i| on the actors’
communication.

Proposition 3. Increasing the magnitude of the ex ante preference divergence of the Agency
from the Policymaker, |i|,

1. has no effect on disclosure in the full disclosure equilibrium;

2. (weakly) decreases disclosure in the expansive equilibrium; and

3. increases disclosure in the guarded equilibrium.

Proof. See Appendix.
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Figure 2: Policymaker’s equilibrium policy selection in the absence of disclosure.

Figure 3: Direct and indirect effects of ex ante preference divergence on Agency’s equilibrium
disclosure in the guarded (left panel) and expansive (right panel) equilibria for i ≥ 0.

The ex ante preference divergence has two effects on the Agency’s disclosure strategy.
First, there is a direct effect : Policymaker’s strategy being fixed, the Agency discloses more
information as divergence increases to obtain policy closer to its own, relatively more extreme,
tastes. However, there is a secondary indirect effect of the ex ante divergence outlined in
Proposition 2: the Agency needs to take into account how its changing disclosure strategy will
affect the Policymaker’s beliefs, and hence the policy she implements, after non-disclosure.
Disclosure depends on both the direct and indirect effects of preference divergence.

Figure 3 shows direct and indirect effects in the guarded equilibrium in the left panel,
and in the expansive equilibrium in the right panel. In the guarded equilibrium, the two
effects reinforce each other, and so as ex ante preference divergence increases, communication
becomes more informative. Greater divergence implies that the Agency’s preferences become
increasingly asymmetric relative to the mean of the prior distribution. This asymmetry
shapes the Agency’s incentives, encouraging it to prioritize disclosure of states on one side
relative to the other, allowing the Policymaker to infer more about the state when information
is withheld. Consequently, the policy choice in the absence of disclosure shifts away from
the prior mean, further encouraging the Agency to disclose information.

In the expansive equilibrium, however, the direct and indirect effects are opposed. Thus,
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greater divergence in the Agency’s preferences encourages the Agency to disclose more,
which results in the disclosure interval being more symmetric and hence non-disclosure is
less informative. The Policymaker, in the absence of disclosure, chooses policy closer to the
prior mean, which, in turn, dampens the Agency’s incentives to disclose. Here the direct
and indirect effects of communication counteract each other. In this equilibrium, the indirect
effect dominates the direct effect, leading to a decline in disclosure as preferences diverge.

4 Belief-Stable Equilibria

Given the different comparative static predictions in the different equilibria we describe, it
is useful to consider more closely the relative stability of the corresponding equilibria. As we
detail above, all three – the full disclosure, guarded, and expansive equilibria – are sequential
equilibria, and all three satisfy standard action-perturbation refinement conditions. With
this in mind, in this section, we present a different stability analysis, focusing on possible
perturbations in beliefs, which is able to usefully differentiate between these equilibria.

We begin with the following definition:

Definition 1. Consider an equilibrium strategy profile and system of beliefs (σ, β) and a
perturbed system of beliefs βε

j . Let σ
ε be sequentially rational given the beliefs (βε

j , β−j), and

let β̂ε
j be consistent with σε. If there exists an ε > 0 such that, for every βε

j that satisfies

|βε
j (y) − βj(y)| < ε, condition |β̂ε

j (y) − βj(y)| ≤ |βε
j (y) − βj(y)| is satisfied for all decision

nodes y assigned to j, then we say that equilibrium (σ, β) is belief-stable for player j.
Equilibrium (σ, β) is belief-stable if it is belief-stable for every player j, and is belief-
unstable otherwise.

Definition 2. Let ε∗j be the largest value ε > 0 such that, for every βε
j that satisfies |βε

j (y)−
βj(y)| < ε, condition |β̂ε

j (y) − βj(y)| ≤ |βε
j (y) − βj(y)| is satisfied for all decision nodes y

assigned to j. We say ε∗j is the extent of belief-stability of (σ, β) for player j.

Intuitively belief-stability ensures that small perturbations in players’ beliefs do not result
in large deviations in their optimal strategies: in belief-stable equilibria, if players’ beliefs
depart slightly from equilibrium beliefs, the feedback they receive as they play the game
reinforces the equilibrium beliefs. In contrast, if the equilibrium is belief-unstable, feedback
will provoke larger and larger deviations from equilibrium beliefs.

The next proposition applies the concept of belief-stability to the sequential equilibria in
the game.

Proposition 4.

1. The guarded equilibrium is belief-stable if |i| ≠ 1
4
.

2. The expansive equilibrium is belief-unstable.

3. The full disclosure equilibrium is belief-stable for all |i| ≠ 0.

4. For |i| ≤ 1
4
, the extent of belief stability of the fully disclosure equilibrium increases and

of the guarded disclosure equilibrium decreases in |i|.
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Figure 4: Policymaker’s beliefs absent disclosure and the policy adopted in the absence of disclosure

Figure 4 illustrates three substantively different scenarios in this game: when i = 0,
i ∈ (0, 1/4], and i > 1/4. Let x-axes represent x, the policy adopted in the absence of
disclosure. The blue dashed line is the 45◦ line, i.e., y = x. Given x, the Agency’s optimal
disclosure interval for i ≥ 0 is M(x, i) = [x, 2 · i − x] ∩ Ω. The orange solid line represents,
then, the Policymaker’s expected value of ω given non-disclosure and supposing the Agency
uses this disclosure interval. Because the Policymaker’s equilibrium policy choice x∗ is such
that x∗ = E[ω|ω /∈ M(x∗, i)]) in equilibrium, i.e., the blue dashed line and the orange solid
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line intersect, defining equilibrium x∗.
Arrows in Figures 4 (a)-(c) show the direction of the best-response updating following

the initial perturbation in the Policymaker’s beliefs. For example, if in the expansive equi-
librium, the Policymaker’s E[ω|m∗(ω) = ∅] shifts from x = xE to x = xE + ε, the Agency
responds by adjusting its disclosure strategy rightward, revealing less information. In turn,
the Policymaker updates her beliefs such that E[ω|ω /∈ M(xE + ε, i)]] > xE + ϵ. In fact,
the expansive equilibrium is belief-unstable and any perturbation of beliefs will cause ad-
justments that move behavior and beliefs farther from this equilibrium. Depending on the
nature of the initial deviation, the game will converge to an equilibrium where the Policy-
maker’s expectation of the state given non-disclosure is either xG or xF .

4 In contrast, small
perturbations in the Policymaker’s beliefs after non-disclosure in the guarded equilibrium
will give rise to adjustments that lead back to to the guarded equilibrium.

Finally, while both the full disclosure equilibrium and the guarded disclosure equilibrium
satisfy belief-stability, their robustness to belief perturbations exhibits opposing trends with
ex ante preference convergence (decreasing |i|). As preferences ex ante align more closely,
the extent of belief stability decreases in the full disclosure equilibrium, but it increases in
the guarded equilibrium. Consequently, for sufficiently aligned preferences, partial disclosure
emerges as the more belief-stable outcome. Figure 5 illustrates these belief-stability regions
as a function of preference divergence (i).

Figure 5: Extent of belief-stability for the guarded equilibrium and for the equilibrium with full
disclosure as a function of the Agency’s most preferred policy i.

5 A (More) General Model

Let the state space Ω ⊆ R be a compact set, with the convex hull denoted by Conv(Ω) =
[Ω,Ω].5 The state of the world, ω ∈ Ω, is drawn from a continuous cumulative distribution
function F with a corresponding probability density function f, where E[ω] = 0.

4Given that |i| /∈ {0, 1/4}.
5While compactness of Ω is not strictly required for the existence of partial disclosure equilibria, it is

important to ensure that the concept of full disclosure equilibrium is well-defined. Without compactness,
full disclosure may not be attainable.
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The Policymaker’s von Neumann-Morgenstern (vN-M) utility function uP (p;ω) is C
1, is

strictly concave in p, and the Policymaker’s ideal policy is pP (ω) := argmaxp uP (p;ω) = ω.6

The Agency’s vN-M utility function uA(p;ω, α, i) is C1, is strictly concave in p, and the
Agency’s ideal policy given by pA(ω, α, i) := argmaxp uA(p;ω, α, i) = α · pP (ω) + (1− α) · i,
where i ∈ R is the Agency’s preference (additive) bias and α ∈ [0, 1] is the Agency’s preference
state dependence. A higher α indicates that the Agency’s preferences are more closely aligned
with those of the Policymaker, while a lower α indicates a stronger weight for the Agency’s
bias i. Let pP0 := argmaxp E[uP (p;ω)] be the Policymaker’s ex ante optimal policy.

We analyze the equilibrium disclosure strategies, which fall into three categories based
on the disclosure set, M ⊆ Ω. In a Full Disclosure Equilibrium (FDE), the Agency reveals
the state for all ω ∈ Ω. In a Partial Disclosure Equilibrium (PDE), the Agency withholds
information for a non-empty set of states, so that ∅ ̸= M ⊂ Ω. Finally, we distinguish a
substantively important limiting case of partial disclosure, which we will refer to as a Non-
Disclosure Equilibrium (NDE). In an NDE, the disclosure set is the singleton M = {pP0 }.
This outcome is substantively equivalent to complete non-disclosure from the Policymaker’s
perspective, as her posterior belief upon observing non-disclosure remains her prior.

As in Section 4, we focus attention on belief-stability of equilibria (see Definition 1).
Recall that an equilibrium is belief-stable if the belief-updating dynamic is locally conver-
gent, meaning small errors in beliefs are self-correcting rather than self-amplifying. The
equilibrium is belief-unstable otherwise.

This section proceeds by first establishing that all equilibria in the model follow a highly
structured pattern: their disclosure sets are nested, and they alternate in terms of belief-
stability. This alternating property implies that knowing the belief-stability of a single
equilibrium is sufficient to determine the belief-stability of all others. The analysis then pro-
vides the specific conditions for the existence and belief-stability of the FDE and NDE before
characterizing the conditions for the existence of PDE. The section concludes with compar-
ative statics, examining how the outcomes in belief-stable equilibria change in response to
model parameters.

Let the Policymaker’s best-response function, x̂(x), be defined as the optimal policy given
the belief that the Agency’s disclosure rule, M(x, α, i), is based on a non-disclosure policy
x. Formally,

x̂(x) := argmax
p

∫
ω∈N(x,α,i)

uP (p;ω) dF (ω), (3)

where N(x, α, i) = Ω \ M(x, α, i) is the set of states the Agency would not disclose if the
anticipated non-disclosure policy were x.

Every equilibrium non-disclosure policy x∗ ∈ X∗ is a fixed point of this function, x∗ =
x̂(x∗). Let X∗(α, i) be the set of all equilibrium policies implemented by the Policymaker
upon non-disclosure, x∗, for a given preference profile (α, i). The following proposition
establishes that these equilibria exhibit a highly structured pattern.

Proposition 5.

6We assume here that the Policymaker is unbiased and show that all the results hold for biased Policy-
maker in the appendix.
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1. Let x∗
j and x∗

k be any two distinct equilibrium non-disclosure policies in X∗(α, i). The
corresponding disclosure intervals are nested according to the Agency’s utility for the
non-disclosure policy. Formally,

uA(x
∗
j ;ω, α, i) ≤ uA(x

∗
k;ω, α, i) ∀ ω ∈ Ω ⇔ M(x∗

k, α, i) ⊆ M(x∗
j , α, i).

2. Let the set X∗ be ordered such that if j < k then x∗
j < x∗

k, then the belief stability of
equilibria must alternate along this ordering.

Proof. See Appendix.

A direct corollary of part (1) of Proposition 5 is that all equilibria can be strictly ranked
by the Policymaker’s ex-ante welfare. An equilibrium sustained by a non-disclosure policy
more favorable to the Agency features a smaller disclosure set, increasing the Policymaker’s
residual uncertainty. This inverse relationship is starkest in the limiting cases. The NDE, if
it exists, is most preferred by the Agency, as it reveals the least information. The FDE, when
exists, maximizes the Policymaker’s ex-ante welfare and minimizing that of the Agency.

Part (2) of Proposition 5 shows that for any given preference profile, belief-stable and
belief-unstable equilibria must alternate along any ordered set of equilibrium policies absent
disclosure. This property means we do not need to analyze the belief-stability of every
equilibrium. Instead, if we can determine the belief-stability of a single one – for instance an
FDE – we can infer belief-stability of all others. We formalize it in the following corollary.

Corollary 2. For any given preference profile, knowing the belief-stability of one equilibrium
is sufficient to determine belief-stability of all equilibria.

The following proposition establishes conditions under which an FDE can be sustained
and, critically, when it is belief-stable, providing necessary anchor for belief-stability analysis
of all other equilibria.

Proposition 6.

1. (a) If uA(p
P (Ω); Ω, α, i) > uA(p

P (Ω); Ω, α, i), then for all conditions on primitives
such that there exists a FDE s.t. x∗ = pP (Ω), that equilibrium is belief-stable;

(b) If uA(p
P (Ω); Ω, α, i) = uA(p

P (Ω); Ω, α, i), then for all conditions on primitives,
such that there exists a FDE s.t. x∗ = pP (Ω), that equilibrium is belief-unstable;

(c) If uA(p
P (Ω); Ω, α, i) < uA(p

P (Ω); Ω, α, i), there does not exist a FDE such that
x∗ = pP (Ω).7

2. (Seidmann and Winter, 1997) There exists an FDE if the Agency’s utility, uA(·), sat-
isfies single-crossing.

Proof. See Appendix.

7Results symmetric to (1).a-(1).c hold for the FDE at x∗ = pP (Ω).
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Part (1) of Proposition 6 addresses belief-stability of FDE, establishing that for an FDE
sustained by a boundary policy to be stable, the Agency must strictly prefer disclosure at
the opposite boundary. If the Agency is indifferent, the equilibrium is not robust to belief
perturbations. At this point of indifference, an arbitrarily small perturbation to the Policy-
maker’s belief causes the Agency’s non-disclosure set to include states from neighborhoods
of both Ω and Ω. The Policymaker’s best response, x̂(x), then, jumps discontinuously to a
policy strictly greater than pP (Ω), violating the condition for belief-stability.

It also provides a necessary condition for an FDE to be sustained. If the Agency has
a strict incentive to conceal a boundary state, FDE is not incentive compatible, rendering
belief-stability analysis obsolete. Finally, part (2), established by Seidmann and Winter
(1997), provides a sufficient condition for the existence of an FDE.

Having established the belief-stability conditions for one potential anchor, we now turn
to the other extreme. The following proposition characterizes conditions for the existence
and belief-stability of the NDE.

Proposition 7.

1. The NDE exists if and only if Agency’s preference state-dependence α satisfies α ≤ α∗∗

for a unique threshold α∗∗ ∈ (0, α∗] and the Agency’s bias is i = pP0 .

2. The NDE, if it exists, is belief-stable.

Proof. See Appendix.

Proposition 7 identifies the NDE as a belief-stable outcome for the case of no ex-ante
preference conflict. We now characterize the conditions under which partial disclosure equi-
libria, the central focus of our analysis, can be sustained. The following proposition provides
the necessary and sufficinet conditions for the existence of such equilibria, linking them to
the degree of the Agency’s preference state-dependence and the magnitude of its intrinsic
bias.

Proposition 8.

1. A PDE exists if and only if the Agency’s state-dependence satisfies α ≤ α∗ for a unique
threshold α∗ ∈ (0, 1). For any such α, the additive biases i that support this equilibrium
form a non-empty, bounded interval I∗(α) ⊂ Ω.

2. The interval I∗(α) always contains the Policymaker’s ex-ante optimum, pP0 ∈ I∗(α).

Proof. See Appendix.

Proposition 8 provides the necessary and sufficient conditions for the existence of partial
disclosure equilibrium. It confirms that partial disclosure is a robust possibility sustainable
when the Agency’s preferences are not excessively state-dependent (low α) and its intrinsic
bias is moderate (i ∈ I∗(α)).

Note that Seidmann and Winter’s condition – single-crossing – is a restriction on prefer-
ences that is not required for our analysis of partial disclosure. With this in mind, observe
that the parameter spaces supporting PDE and FDE are not mutually exclusive: if the
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Agency’s utility, uA(·), satisfies single-crossing, then for any parameter profile (α, i) that
supports a partial disclosure equilibrium (α ≤ α∗ and i ∈ I∗(α)), the game admits multiple
equilibria.

The following propositions show the belief-stability criterion is equivalent to a specific
comparative static property of the equilibrium non-disclosure policy and disclosure intervals
with respect to the Agency’s bias and state-dependence.

Proposition 9. The equilibrium is belief-stable if and only if the equilibrium policy following
non-disclosure, x∗, is

1. decreasing in the Agency’s bias, i; and

2. decreasing in the Agency’s preference state-dependence, α, when x∗ > i, and increasing
in α otherwise.

Proof. See Appendix.

Proposition 10. The equilibrium is belief-stable if and only if the disclosure interval, M(x∗, α, i),
is

1. expanding in the Agency’s bias, i, when x∗ ≤ i, and contracting in i otherwise; and

2. expanding in the Agency’s preference state-dependence, α.

Proof. See Appendix.

In canonical disclosure models (e.g., Milgrom 1981; Milgrom and Roberts 1986), a sophis-
ticated receiver anticipates the sender’s incentive to conceal unfavorable information. This
anticipation leads the receiver to adopt a skeptical posture, making a pessimistic inference
from any non-disclosure, which in turn compels the sender to be more forthcoming. In our
partial disclosure equilibria, the underlying sophisticated behavior – in particuar, the equilib-
rium policy moving in opposition to the Agency’s additive bias (dx∗/di ≤ 0) – is analogous.
Anticipating the pull of the incentives of a more biased Agency, the Policymaker adjusts the
policy absent disclosure away from the Agency’s ideal point. Belief-stability thus serves to
select equilibria that may be though to embody the Policymaker’s rational distrust of the
Agency, given those incentives.

While Proposition 9 fully characterizes how policy x∗ behaves in belief-stable equilibria,
the disclosure interval, M(x∗, α, i), is a function of both x∗ and i. Consequently, a change in
the Agency’s bias exerts both a direct influence on the boundaries of the disclosure interval
and an indirect influence mediated through the adjustment of the equilibrium policy x∗.

Proposition 10 characterizes the net effect of parameters on the information disclosed.
The comparative statics with respect to the Agency’s preference state-dependence, α, is
straightforward. A higher α implies that the Agency’s preferences are more closely aligned
with the state-contingent goals of the Policymaker, reducing the conflict of interest. In any
belief-stable equilibrium, this greater alignment unambiguously leads to a larger disclosure
interval and, thus, to more information transmission.

The effect of the Agency’s additive bias, i, is more complex. An increase in i can represent
either a convergence of ex-ante preferences (when i < pP0 ) or a divergence (when i ≥ pP0 ).
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In standard applications with sufficient symmetry (such as in the case with uniform prior
and quadratic objective functions we studied above), the Policymaker’s ex-ante optimum,
pP0 , and the equilibrium non-disclosure policy, x∗, both lie on the same side of the Agency’s
bias.8 According to Proposition 10, this implies that greater ex-ante preference misalignment
will result in more information disclosure.

This finding stands in sharp contrast to the canonical predictions of cheap-talk models,
where preference divergence typically undermines communication. The mechanism here is
driven by the Policymaker’s skepticism. As established in Proposition 9, x∗ always shifts to
oppose the Agency’s bias. When x∗ and pP0 are on the same side of i, preference divergence
makes the non-disclosure outcome more punitive, leading to greater disclosure.

This counterintuitive result would be reversed, however, if the equilibrium geometry is
such that the non-disclosure policy, x∗, and the ex-ante optimum, pP0 , lie on opposite sides
of the Agency’s bias i ((x∗ − i) · (pP0 − i) < 0). This would require a strong skew in the prior
distribution or utility functions to pull the Policymaker’s conditional expectation, x∗, so far
from the unconditional expectation, pP0 , that it crosses the Agency’s bias. When this occurs,
an increase in preference divergence moves the skeptical policy x∗ closer to the Agency’s
ideal point, making non-disclosure less punitive and so leading to less disclosure.

The existence of these two distinct equilibrium geometries, which may generate opposing
comparative statics, makes it important to identify the underlying conditions that govern
which type of outcome is possible. The following proposition provides such a condition,
linking the geometric properties of equilibria for any bias i to the equilibrium structure at
the specific point of no ex-ante bias, i = pP0 .

Proposition 11.

1. All partial disclosure equilibria satisfy (x∗ − i) · (pP0 − i) > 0 for any i ̸= pP0 if and only
if at i = pP0 , the unique belief-stable equilibrium is the Non-Disclosure Equilibrium.

2. There exist no belief-stable partial disclosure equilibria satisfying (x∗ − i) · (pP0 − i) <
0 for any i if at i = pP0 , the unique belief-stable equilibrium is the Non-Disclosure
Equilibrium.

Proof. See Appendix.

Proposition 11 may be seen as providing a regularity condition that can serve as a di-
agnostic tool for characterizing the model’s outcomes. The condition that the NDE is the
unique belief-stable equilibrium at i = pP0 is met in standard symmetric settings, including
the uniform-quadratic example analyzed earlier in the paper.

The proposition’s second statement establishes that when this regularity condition holds,
the geometric configuration where (x∗−i)·(pP0 −i) < 0 is ruled out for all belief-stable equilib-
ria. This provides a clear scope for the model’s comparative static predictions. Specifically,
under this condition, any belief-stable equilibrium will feature the property that greater
ex-ante preference divergence leads to more information disclosure.

8E.g., if the Agency’s ex-ante preference is to the left of the Policymaker’s, the non-disclosure set is
typically concentrated to the left of pP0 , and the resulting equilibrium non-disclosure policy lies to the right
of the Agency’s bias (x∗ > i).
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Conversely, if the condition from Proposition 11 fails, we cannot guarantee against equi-
libria with the (x∗ − i) · (pP0 − i) < 0 geometry. It remains possible, however, that all
belief-stable equilibria still satisfy (x∗− i) · (pP0 − i) > 0, in which case the comparative static
of increased disclosure with greater preference divergence holds everywhere.

6 Robustness

In this section, we test the robustness of our core findings by relaxing two key assumptions:
perfect message verifiability and the restriction to a binary disclosure choice. To maintain
analytical tractability and isolate the impact of each modification, we conduct this analysis
within the framework of the uniform prior and state-independent preferences model from
Section 3. Finally, we assume, for tractability, that i ≥ 0, the case of i ≤ 0 is symmetric.

6.1 Partial Verifiability

Throughout the preceding analysis, all messages observed by the Policymaker are assumed to
be perfectly verifiable. That is, whenever the Agency discloses a state, the Policymaker can
infer with certainty that the message accurately reflects the Agency’s observation. Formally,
the Agency can send a message m = ω if and only if it observes state ω.

In this section, we relax this assumption by introducing partial verifiability, allowing the
Agency to distort information. Specifically, the Agency may send a point messagem = ω̃ ∈ Ω
that differs from the true state ω. The Policymaker, in turn, has the ability to verify whether
the received message accurately reflects the underlying state.

Verification occurs probabilistically: with probability q ∈ [0, 1], the Policymaker receives
a signal s(m) that indicates whether the reported message is truthful. If the message is
truthful (m = ω), the Policymaker observes s(m) = True; if the message is distorted (m ̸= ω),
the Policymaker observes s(m) = False. With probability 1− q, the verification mechanism
is inconclusive, and the Policymaker receives no additional information, observing s(m) = ∅.
When q = 1, all messages are perfectly verifiable, meaning that any distortion by the Agency
is immediately detected by the Policymaker. Conversely, when q = 0, messages are never
verifiable, and the Policymaker receives no information beyond the reported message itself.

Observe that in this game with partial verifiability, a full disclosure equilibrium cannot
exist. Consider an Agency with i ≥ 0 that observes the state realization ω = Ω. The Agency
will refrain from distorting its message only if the expected policy implemented following a
distortion is at least as far from its ideal point as the policy implemented when the true state
is disclosed. This condition implies that the Policymaker must implement at least p = Ω
whenever verification is inconclusive.

However, since the probability of verification is independent of whether the message
corresponds to the true state or is strategically distorted: in FDE all types including ω ̸= Ω
choose to disclose their state by sending m = ω. The Policymaker, thus, must incorporate
this uncertainty into their policy decision. Following an inconclusive verification outcome,
s(m) = ∅, the Policymaker’s sequentially optimal policy must be closer to i than to Ω. This,
in turn, implies that type ω = Ω strictly prefers to distort its message rather than disclose
truthfully, contradicting the existence of a full disclosure equilibrium.
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The following proposition characterizes an equilibrium of this game:

Proposition 12. There is a belief-stable equilibrium such that

p∗ =


m, if s(m) = T,
i(i−y∗)
i−y∗−1

, if s(m) = F,

z∗, if s(m) = ∅
; m∗(ω) =

{
ω, if ω ∈ [y∗, 2 · i− y∗] ∩ [−1, 1],

ω̃, else,

where

y∗ =
i(1 + q)− 1 +

√
(1− i(1 + q))2 − 4i2q

2
, z∗ = 0, ω̃ ∼ U

[
[y∗, 2 · i− y∗] ∩ [−1, 1]

]
,

Proof. See Appendix.

In this equilibrium, the Agency fully discloses its information when the realized state
falls within the interval [i−

√
(y − i)2, i+

√
(y − i)2] ∩ [−1, 1]. When the realized state lies

outside this region, the Agency distorts its information, instead sending a message drawn
from a uniform distribution over this interval, effectively mimicking the prior distribution.

Figure 6 illustrates the disclosure boundaries as a function of the Agency’s ideal point i
for different values of the verifiability parameter q.

Figure 6: Disclosure intervals as a function of the Agency’s ideal point i for different levels of partial
verifiability q.

The following proposition characterizes the comparative statics of the disclosure intervals
with respect to the Agency’s ideal point i and the verifiability parameter q.

Proposition 13. The disclosure interval within which the Agency fully reveals the state to
the Policymaker,

[y∗, 2 · i− y∗],

such that y∗ =
i·(1+q)−1+

√
(1−i(1+q))2−4·i2·q
2

exhibits the following properties:

1. it is increasing in i;

2. it is increasing in q.
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Proof. See Appendix.

As the Agency’s ideal point moves further from the prior mean, the range of disclosed
states expands. Higher verifiability reduces the incentive to engage in misreporting, leading
to a contraction in the set of states that remain undisclosed.

6.2 Agency’s Vagueness

We demonstrate that an equilibrium outcome analogous to the belief-stable partial disclosure
equilibrium (the “guarded” equilibrium from Proposition 1 can be sustained as a Sequential
Equilibrium (SE) if we allow the Agency to strategically choose the precision of its verifiable
message. We continue to work with the assumptions of the special case: Ω = [−1, 1], f(·) is
the uniform density on Ω, and utility functions are uP (p) = −(ω−p)2 and uA(p) = −(i−p)2.

Suppose that for any true state ω ∈ Ω, the Agency can select any message T ⊆ Ω
such that ω ∈ T . The message T is verifiable, meaning that the Policymaker learns with
certainty that the true state ω is an element of T . The Agency’s message space is thus a set
{T ⊆ Ω | ω ∈ T}. A message strategy for the Agency is a function m : Ω → P(Ω), where
P(Ω) is the power set of Ω, such that for every ω ∈ Ω, ω ∈ m(ω).

If the Agency sends a singleton message m(ω) = {ω}, we say the state ω is fully dis-
closed. If m(ω) = T where T = {ω} , the message is vague. Upon receiving a message
T , the Policymaker updates her beliefs via Bayes’ rule when applicable, conditional on her
conjecture of the Agency’s strategy m(·) and the prior f(·). If T = {ω}, the Policymaker’s
posterior belief assigns probability one to state ω.

Let ω(T ) := argmaxω∈T |i − ω|.9 Substantively, state ω(T ) is the one furthest away
from the Agency’s most preferred policy i. Next, denote the family of all off-path messages
available to the Agency observing realization ω as Toff (ω) := {T : ω ∈ T, T ̸= {ω}, T ̸= NG}.

The following proposition characterizes a sequential equilibrium supported by this system
of beliefs:

Proposition 14. The following strategy profile and system of beliefs can be supported in a
Sequential Equilibrium:

1. Agency’s Strategy m∗(ω):

m∗(ω) =

{
{ω} if ω ∈ MG,

NG if ω ∈ NG,

where MG = {ω′ ∈ Ω | −(i − ω′)2 ≥ −(i − xG)
2}, xG is the policy equal to one

implemented in the guarded partial disclosure equilibrium (Proposition 1), and NG =
Ω \MG.

2. Policymaker’s Strategy p∗(T ):

p∗(T ) = E[ω | T ;m∗(·), β(·|T )],

where β(·|T ) are Policymaker’s beliefs given by

9If multiple such states exist, ties can be broken arbitrarily, e.g., by selecting the smallest such ω̃.
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3.

β(ω|T,m(.)) =


1, T = {ω};
1ω∈NG

· f(ω)∫
NG

f(ω̂)dω̂
, T = NG;

1ω=ω(T ), T ∈ Toff (ω).

(4)

Proof. See Appendix.

Note that system of Policymaker’s beliefs described in the proposition is “skeptical”,
attributing any deviation to the type ω(T ) within the deviated message T that is least
favorable to the Agency. The construction of such beliefs is crucial for deterring deviations
to arbitrary vague messages not specified on the equilibrium path.

Proposition 14 demonstrates that the equilibrium outcome characterized in Proposition
1 – the unique belief-stable partial disclosure equilibrium – is robust to a significant en-
largement of the Agency’s message space. The equilibrium assessment (m∗, p∗, β) retains
the same partition of types into disclosure and non-disclosure sets, inducing the same policy
absent disclosure. Consequently, the sequential equilibrium of the model with vague com-
munication retains the key features and comparative statics of the belief-stable equilibrium,
emphasizing that the mere availability of arbitrarily precise messages does not inherently
improve communication.

7 Discussion

7.1 Policymaker’s Optimal Choice of Agency

Policymakers in many institutional settings often have discretion over the selection of agents
or advisors from whom they receive policy advice. The biases of these agents significantly
influence the quality and nature of the information transmitted.

The standard intuition, borne of the extensive cheap-talk signaling literature, is that
information-revelation increases in the preference proximity between the sender and receiver.
A related idea is the benchmark “ally principle” from the delegation literature, which posits
that principals should delegate authority to agents with co-aligned preferences (Bendor and
Meirowitz, 2004). A substantial body of literature has shown that this expectation might fail,
and a principal might prefer an agent with preferences divergent from her own, when agents’
information is endogenous. Che and Kartik (2009) argue that differences in preferences
between advisors and decision-makers create incentives for advisors to acquire information,
which can benefit decision-makers when the advisors’ biases are moderate. Similarly, Krishna
and Morgan (2001) demonstrate that the presence of another biased expert can enhance the
decision-maker’s ability to extract information from a biased advisor. Gailmard and Patty
(2007) characterize scenarios where greater agent bias encourages the acquisition of expertise,
as biased agents are more motivated to influence outcomes. Prendergast (2007) also shows
that higher agent bias may motivate agents to exert more effort beyond what might be
achieved via monetary incentives.

In contrast to the previous literature, we have shown that even when information is exoge-
nous and readily available to the Agency, strategic policy implementation by the Policymaker
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is sometimes – depending on the nature of the equilibrium played by the Policymaker and the
Agency – not enough to guarantee full disclosure. Our analysis suggests that, assuming that
the Policymaker is not in a position to effect the selection of the full-disclosure equilibrium
when partial disclosure equilibria are possible, she may be better off selecting an Agency
with sufficiently divergent ex ante policy preference. Doing so can guarantee that the only
equilibrium possible is full-disclosure, and helps increase disclosure in the belief-stable partial
disclosure equilibria when they are present.

7.2 More Discussion TBA
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Appendix

Lemma 1

Because information is verifiable, in case of disclosure, subsequent beliefs are independent of
Agency strategy:

Pr(ω|m = ω′) =

{
1 if ω = ω′

0 if ω ̸= ω′.
(5)

In contrast, p(ω|∅) is determined by Bayes Rule and depends on the Agency’s disclosure
strategy m(ω):

p(ω|m = ∅) =
1(m(ω) = ∅)p(ω)∫ 1

−1
1(m(ω′ = ∅))p(ω′)dω′

, (6)

where 1 is an indicator function. For the quadratic utility function, the Policymaker’s
expected utility is maximized at p = E[ω|m], thus equation 1 follows.

Lemma 2

The Agency strictly prefers to disclose its information ω to the Policymaker when p = ω
yields higher utility than p = x:

−(i− ω)2 > −(i− x)2,

=⇒ ω ∈

{
(x, 2 · i− x) if x ≤ i

(2 · i− x, x) if x ≥ i.

Because the support of the distribution if ω is [−1, 1], the Agency discloses ω ∈ (x, 2 · i −
x)∩ [−1, 1] for i > x and does not disclose ω ∈ [−1, 1]\ [x, 2 · i−x]. The Agency is indifferent
for ω = x and ω = 2 · i− x. The argument for i ≤ x case is symmetric.

Finally, note that because x = E[ω|m(ω) = ∅], when i ≥ x, x < 0.

Proposition 1

1. There exists a full-disclosure sequential equilibrium in this game. Suppose the Agency
discloses all states it observes, and after non-disclosure (m = ∅), the Policymaker selects
policy x∗ = −1 if i > 0, and x∗ = +1 if i < 0, and selects either x∗ = −1 or x∗ = +1 if i = 0.
Then, given x∗, Agency prefers p∗ = ω to p∗ = x∗ ∀ω.

To establish that this strategy profile is supported in a sequential equilibrium, it remains
to show that beliefs supporting p∗(∅) = x∗ as an optimal choice for the Policymaker are fully
consistent with the strategy profile. A sequence of completely mixed disclosure strategies
{µk(ω)}∞1 can be constructed with

µk(ω) =

{
1− εk(ω) if ω ∈ M(x∗, i)

εk(ω) if ω ∈ [−1, 1] \M(x∗, i).
(7)
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If {εk(ω)}∞1 → 0 for every ω, then {µk(ω)}∞1 → µ∗(ω) for every ω ∈ Ω. In particular, let
εk(ω′) converge faster than εk(ω′′) for every ω′, ω′′ s.t. ω′ > ω′′; then {x∗k}∞k=1 := {E[ω|m =
∅;µk]}∞k=1 converges to -1. Likewise, if εk(ω′) converges faster than εk(ω′′) for every ω′, ω′′

s.t. ω′ < ω′′, it converges to +1. Thus, the full-disclosure equilibria are SE.
2. Suppose i = 0. If x∗ = 0, the Agency is indifferent between disclosing and not

disclosing ω = 0, and strictly prefers not disclosing (m = ∅) for all ω ̸= 0. If the Agency
does not disclose for all ω ̸= 0, then, regardless of µ(0), x∗ = E[ω|m = ∅, µ∗] = 0. It
remains to show that the Policymaker’s beliefs are fully consistent. Because beliefs following
m = ω ∀ω are determined by the verifiability of information, and because m = ∅ occurs
with positive probability in equilibrium, there are no off-path-of-play information sets, and
so beliefs are fully consistent with µ∗(·).

3. Lemma 1 and Lemma 2 describe Policymaker’s and Agency’s equilibrium behavior.
Absent disclosure, the Policymaker selects policy x∗ such that

x∗ = E[ω|m = ∅;µ∗].

For i > 0 and [x∗, 2 · i− x∗] ⊂ [−1, 1], x∗ solves equation

x = E[ω|m = ∅, µ∗] =

∫ x

−1
ω · f(ω)dω +

∫ +1

2·i−x
ω · f(ω)dω

F (∞)− F (2 · i− x) + F (x)− F (−1)

= −
∫ 2·i−x

x
ω · f(ω)dω

1− F (2 · i− x) + F (x)
= −

∫ 2·i−x

x
ω/2 dω

1− (2 · i− x+ 1)/2 + (x+ 1)/2

=
(i− x) · i
i− x− 1

Therefore, x∗ solves

x =
(i− x) · i
i− x− 1

⇔
i · x− x2 − x = i2 − i · x

⇔
x2 − x · (−1 + 2 · i) + i2 = 0

Thus, x∗ ∈ {xE, xG} where

xE :=
2 · i− 1−

√
1− 4 · i

2
and

xG :=
2 · i− 1 +

√
1− 4 · i

2
.

Hence, there can be two equilibria, one where the Policymaker chooses xE absent disclo-
sure and the other one where the Policymaker chooses xG.

Note that, for i > 0, xE < xG < 0, and thus the disclosure intervals corresponding to
these two equilibria are nested:

[xG, 2 · i− xG] ⊂ [xE, 2 · i− xE].
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Because the condition [x∗, 2·i−x∗] ⊂ [−1, 1], which we imposed at the beginning, must be

satisfied, it must be that x∗ ∈ [−1, 0], or, equivalently, 2·i−1−
√
1−4·i

2
> −1 and 2·i−1+

√
1−4·i

2
< 0.

These inequalities are satisfied when i ∈ [0, 1/4].When i > 1/4 neither guarded nor expansive
equilibrium exists.

Because information is verifiable, and m = ∅ occurs on the path of play, beliefs are fully
consistent and hence these equilibria are sequential equilibria.

4. Now suppose that i < 0 and [2i− x∗, x∗] ⊂ [−1, 1]. In equilibrium, x∗ solves

x = E[ω|m = ∅, µ∗] =

∫ 2i−x8x

−1
ω · f(ω)dω +

∫ +1

x
ω · f(ω)dω

F (1)− F (x∗) + F (2i− x∗)− F (−1)
=

i(i− x∗)

1 + i− x∗ ,

which yields x∗ ∈ {xE, xG}, where

xE :=
1

2
(2i+ 1 +

√
1 + 4i)

and

xG :=
1

2
(2i+−

√
1 + 4i).

Note that [2i−xG, xG] ⊂ [2i−xE, xE], i.e. more information is disclosed in the expansive
equilibrium than in the guarded equilibrium, and 0 ≤ xG ≤ xE, implying i ∈ [−1

4
, 0]. Because

m = ∅ occurs on the path of play, beliefs are fully consistent with the strategy profile.

Proposition 2

1. From Proposition 1, xF is independent of i except at i = 0, where there is a jump
discontinuity (downward).

2. xG is defined in parts 3 and 4 of PropositIon 1. Differentiating each wrt i, we have

dxG

di
= 1− 1√

1− 4 · i
≤ 0 for i ∈ [0, 1/4), (8)

and
dxG

di
= 1− 1√

1 + 4 · i
≤ 0 for i ∈ [−1/4, 0),

hence xG is decreasing in i ∈ [−1/4, 1/4).
3. xE is defined in parts 3 and 4 of Proposition 1. Differentiating each wrt i, we have

dxE

di
= 1 +

1√
1− 4 · i

≥ 0, for i ∈ [0, 1/4), (9)

and
dxE

di
= 1 +

1√
1 + 4 · i

≥ 0, for i ∈ [−1/4, 0).

Note that xE for i ≤ 0 evaluated at i = 0 is 1, whereas xE for i ≥ 0 evaluated at i = 0 is -1.
Thus, xE has a downward discontinuity at i = 0.
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Proposition 3

1. From Proposition 1, the disclosure interval in the full disclosure equilibrium does not
depend on i. Consider the case i ≥ 0. From Lemma 2, the upper bounds of the disclosure
intervals depend on i both directly and indirectly via x, and the lower bounds depend on i
via x.

Differentiating the upper bound,

d(2 · i− x∗)

di
= 2︸︷︷︸

direct effect

−dx∗

di
.︸ ︷︷ ︸

indirect effect

From (9), in the expansive equilibrium, the indirect effect of increasing i dominates the direct
effect, lowering the upper bound of the disclosure interval.

d(2 · i− xE)

di
= 2− 1− 1√

1− 4 · i
≤ 0.

From Proposition 2, the lower bound of the disclosure interval is increasing; thus the Agency
discloses less in the expansive equilibrium as i increases.

3. In the guarded equilibrium, both the direct and indirect effects of increasing i are
aligned, resulting in an expansion of the disclosure interval. From Lemma 2 and (8), the
derivative of the upper bound of the disclosure interval in the guarded equilibrium is

d(2 · i− xE)

di
= 2− 1 +

1√
1− 4 · i

≥ 0.

This positive derivative indicates that as i increases, the upper threshold 2i− xG increases.
From Proposition 2, the lower threshold xG decreases with i, and so the disclosure interval
expands as i increases in the guarded equilibrium.

Proposition 4

Let us first consider the guarded SE. Policymaker chooses xG = (2 · i − 1 +
√
1− 4 · i)/2

absent disclosure. Note that Agency’s best response to Policymaker’s selection of policy
x0 ∈ [xG−ε, xG+ε] where ε =

√
1− 4 · i will be to disclose states ω such that ω ∈ [x0, 2·i−x0].

Importantly, Policymaker’s best response to this disclosure strategy is to select policy x1 such
that

x1 = −
∫ 2·i−x0

x0
ω · f(ω)dω

1− (2 · i− x0 + 1)/2 + (x0 + 1)/2
=

(i− x0) · i
i− x0 − 1

.

Note that x0 ≤ x1 when

x0 ≤
(i− x0) · i
i− x0 − 1

⇔ x0 ∈ [
2 · i− 1−

√
1− 4 · i

2
,
2 · i− 1 +

√
1− 4 · i

2
]. (10)
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and x0 exceeds x1 otherwise. Therefore, when ε =
√
1− 4 · i and x0 ∈ [xG − ε, xG] policy

x0 ≤ x1. Further, when x0 ∈ [xG − ε, xG] policy x1 cannot exceeds xG. Assume instead that
x1 exceeds xG :

x1 =
(i− x0) · i
i− x0 − 1

> xG =
2 · i− 1 +

√
1− 4 · i

2

x0 >
2 · i− 1 +

√
1− 4 · i

2
,

which contradicts expression (10). Therefore, when x0 ∈ [xG − ε, xG], |xG − x0| < |xG − x1|.
By similar logic, when x0 ∈ [xG, xG + ε], |xG − x0| < |xG − x1|. Therefore,

∀x0 : x0 ∈ [xG − ε, xG + ε], ε =
√
1− 4 · i, |xG − x0| < |xG − x1|, (11)

and the guarded equilibrium is belief stable.
The expansive equilibrium, in contrast, is belief-unstable. Note that for any policy x0

chosen absent disclosure from the interval [xE, xE + ε], where ε =
√
1− 4 · i, the Agency

responses by disclosing states ω ∈ [x0, 2 · i− x0]. The Policymaker’s response to this is

x1 = −
∫ 2·i−x0

x0
ω · f(ω)dω

1− (2 · i− x0 + 1)/2 + (x0 + 1)/2
=

(i− x0) · i
i− x0 − 1

.

By statement (11), x1 > x0. Now, let us consider x0 ∈ [−1, xE]. Because

x1 =
(i− x0) · i
i− x0 − 1

and x0 ≤ x1 if and only if x0 ∈ [2·i−1−
√
1−4·i

2
, 2·i−1+

√
1−4·i

2
], when x0 < xE policy x1 < x0.

Therefore, guarded equilibrium is never belief-stable.
Finally, when equilibrium is fully revealing and i > 0, the Agency’s best response to any

policy x0 ∈ [−1, xE] is x1 = (i−x0)·i
i−x0−1

s.t. x1 ≤ x0. Therefore, fully revealing equilibrium will
be belief stable. When i = 0, policy xE converges to −1 and fully revealing equilibrium is
belief-unstable.

Proposition 5

1. Since the Agency’s utility function uA is continuous in all its arguments, the boundaries of
the set N(x, α, i) are continuous functions of the hypothetical policy x ∈ (Ω,Ω). Given ω is
drawn from a continuous distribution F , the integral defining N(·) is a continuous function
of its (continuously moving) boundaries. Therefore, x̂(x) is continuous for all x ∈ (Ω,Ω).

Let the set of all equilibrium non-disclosure policies, including any boundary FDEs (X∗)
be strictly ordered. An equilibrium x∗

j is belief-stable if, in a neighborhood of x∗
j , the graph

of x̂(x) crosses the 45-degree line from above. It is belief-unstable if it crosses from below.
Given continuity of x̂(x) for all x ∈ (Ω,Ω), the elements of X∗ must alternate in their
belief-stability properties.

2. Let (x∗
j ,M

∗
j ) and (x∗

k,M
∗
k ) constitute two distinct partial disclosure equilibria, where

M∗
j = M(x∗

j , α, i) and M∗
k = M(x∗

k, α, i).
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Assume that uA(x
∗
j ;ω0, α, i) ≤ uA(x

∗
k;ω0, α, i) but M

∗
k ̸⊆ M∗

j . Then there exists ω0 s.t.,
ω0 ∈ {M∗

k\M∗
j }. This implies: uA(p

P (ω0);ω0, α, i) ≥ uA(x
∗
k;ω0, α, i) and uA(p

P (ω0);ω0, α, i) <
uA(x

∗
j ;ω0, α, i). Thus, uA(x

∗
j ;ω0, α, i) > uA(p

P (ω0);ω0, α, i) ≥ uA(x
∗
k;ω0, α, i). This simpli-

fies to uA(x
∗
j ;ω0, α, i) > uA(x

∗
k;ω0, α, i), presenting a contradiction.

The proof for the converse implication follows a symmetric argument and is omitted.

Proposition 6

1. We analyze the belief-stability of a FDE characterized by x∗ = pP (Ω); the analysis for
x∗ = pP (Ω) is symmetric.

An FDE is belief-stable if small perturbations to the Policymaker’s beliefs about the
off-path policy do not lead to divergent best responses. Formally, it is belief-stable iff

lim
ε→0+

x̂(pP (Ω) + ε)− x̂(pP (Ω))

ε
≤ 1. (12)

When x̂(x) is right-differentiable at pP (Ω), this can condition simplifies to

lim
x→pP (Ω)+

dx̂

dx
≤ 1.

The differentiability of x̂(x) at pP (Ω) is not guaranteed. If the non-disclosure set,
N(x, α, i), is disconnected for x in a right-neighborhood of pP (Ω), x̂(x) will be discontinuous,
limx→pP (Ω)+ x̂(x) ̸= pP (Ω). Such discontinuity implies not belief-stability. We, thus, focus on

the case where x̂(x) is right-differentiable, which requires that ∃δ > 0 : the non-disclosure
interval ∀x ∈ [pP (Ω), pP (Ω) + δ), is a single interval N(x) = [Ω, ωb(x)], where ωb(x) is such
that uA(p

P (ωb(x));ωb(x), α, i) = uA(x;ωb(x), α, i).
Define

K(x, y;α, i) :=

∫
Ω

∂

∂p
uP (p;ω)

∣∣∣∣
p=y

dF (ω|ω ∈ N(x, α, i)). (13)

The best response x̂(x) is implicitly defined by K(x, x̂(x);α, i) = 0. Applying the Implicit
Function Theorem yields

dx̂

dx
= −∂K(x, y;α, i)/∂x

∂K(x, y;α, i)/∂y

∣∣∣∣
y=x̂(x)

. (14)

We evaluate Equation 14 as x → pP (Ω)
+
. The strict concavity of uP ensures that the

denominator, ∂K/∂y, is always strictly negative.

lim
x→pP (Ω)+

∂K

∂y

∣∣∣∣
y=x̂(x)

=
∂2uP (p;ω)

∂p2

∣∣∣∣
p=pP (Ω), ω=Ω

< 0. (15)

Next, we evaluate the numerator. Define

A(x, y, α, i) :=

∫
ω∈N(x,α,i)

∂

∂p
uP (p;ω)|p=yf(ω)dω

B(x, α, i) :=

∫
ω∈N(x,α,i)

f(ω)dω.

(16)
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The equilibrium condition K = 0 implies A(x = x∗, y = x̂(x)) = 0. Therefore, the numerator
of Equation 14 simplifies to

∂K(x, y;α, i)

∂x

∣∣
y=x̂(x)

=
dA/dx ·B − dB/dx · A

B2

∣∣∣∣
y=x̂(x)

=
dA/dx

B

∣∣∣∣
y=x̂(x)

. (17)

As x → pP (Ω), both numerator and denumerator converge to zero. We apply L’Hôpital’s

Rule to determine limx→pP (Ω)+
∂K(x,y;α,i)

∂x

∣∣
y=x̂(x)

.

lim
x→pP (Ω)+

dB

dx
= lim

x→pP (Ω)+
f(ωb(x)) ·

dωb(x)

dx
. (18)

We analyze components of dA
dx

separately, denoting

lim
x→pP (Ω)+

dA

dx
= lim

x→pP (Ω)+

∂uP

∂p

∣∣∣∣p = x̂(x), ω = ωb(x) · f(ωb(x)) ·
dωb

dx︸ ︷︷ ︸
Term 1

+ lim
x→pP (Ω)+

dx̂

dx
·
∫ ωb(x)

Ω

∂2uP

∂p2

∣∣∣∣p = x̂(x)f(ω)dω︸ ︷︷ ︸
Term 2

.

(19)

Given ∂up/∂p approaches 0 as x approaches pP (Ω),

lim
x→pP (Ω)+

d

dx
(Term 1) = lim

x→pP (Ω)+

d

dx

(
∂uP

∂p

∣∣∣∣
p=x̂(x),ω=ωb(x)

· f(ωb(x)) ·
dωb

dx

)

=

(
∂2uP

∂p∂ω
· dωb

dx
+

∂2uP

∂p2
· dx̂
dx

) ∣∣∣∣
pP (Ω),Ω

· f(Ω) · dωb

dx

∣∣∣∣
pP (Ω)

.

(20)

lim
x→pP (Ω)+

d

dx
(Term 2) = lim

x→pP (Ω)+

(
d

dx

(∫ ωb(x)

Ω

∂2uP

∂p2

∣∣∣∣
p=x̂(x)

· f(ω)dω

))
· dx̂
dx

+ lim
x→pP (Ω)+

(∫ ωb(x)

Ω

∂2uP

∂p2

∣∣∣∣
p=x̂(x)

· f(ω)dω

)
· d

2x̂

dx2

= lim
x→pP (Ω)+

∂2uP

∂p2

∣∣∣∣
x̂(x),ωb

· f(ωb) ·
dωb

dx
· dx̂
dx

+ 0

=
∂2uP

∂p2

∣∣∣∣
pP (Ω),Ω

· f(Ω) · dωb

dx

∣∣∣∣
pP (Ω)

· dx̂
dx

∣∣∣∣
pP (Ω)

.

(21)

Therefore,

lim
x→pP (Ω)+

∂K

∂x

∣∣∣∣
y=x̂(x)

=

(∂
2uP

∂p∂ω
· dωb

dx
+ 2 · ∂2uP

∂p2
· dx̂
dx
)

∣∣∣∣
pP (Ω,Ω

· f(Ω) · dωb

dx

∣∣∣∣
pP (Ω)

f(Ω) · dωb

dx

∣∣∣∣
pP (Ω

=
∂2uP

∂p∂ω

∣∣∣∣
pP (Ω),Ω

· dωb

dx

∣∣∣∣
pP (Ω)

+ 2 · ∂
2uP

∂p2

∣∣∣∣
pP (Ω),Ω

· dx̂
dx

∣∣∣∣
pP (Ω)

.

(22)
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Substituting (22) into the implicit function formula gives an equation for the slope dx̂
dx

∣∣
pP (Ω)

:

dx̂

dx

∣∣∣∣
pP (Ω)

= −
(∂

2uP

∂p∂ω
· dωb

dx
+ 2 · ∂2uP

∂p2
· dx̂
dx
)
∣∣
pP (Ω),Ω

∂2uP

∂p2
|pP (Ω),Ω

= (−
∂2uP

∂p∂ω
· dωb

dx

∂2uP

∂p2

− 2 · dx̂
dx

)
∣∣
pP (Ω),Ω

.

(23)

Solving for the derivative yields the definitive expression for the slope of the best-response
function at the boundary:

dx̂

dx

∣∣∣∣
pP (Ω)

= −1

3

∂2uP

∂p∂ω

∂2uP

∂p2

· dωb

dx

∣∣
pP (Ω),Ω

,

where ωb(x) is defined by the Agency’s indifference uA(p = x;ω = ωb, α, i) = uA(p =
pP (ωb);ω = ωb, α, i). Then

dωb(x)

dx
= −∂(uA(x;ωb, α, i)− uA(p

P (ωb);ωb, α, i))/∂x

∂(uA(x;ωb, α, i)− uA(pP (ωb);ωb, α, i)/∂ωb

= − ∂uA/∂p|p=x,ω=ωb

∂uA/∂ω|p=x,ω=ωb
− (∂uA/∂p · dpP (ωb)

dωb
+ ∂uA/∂ω)|p=pP (ωb),ω=ωb

(24)

As x approaches pP (Ω), ωb approaches Ω, thus

dωb(x)

dx

∣∣∣∣
pP (Ω)

= −
∂uA/∂p|p=pP (ωb),ω=ωb

−∂uA/∂p|p=pP (ωb),ω=ωb
· dpP (Ω)

dω

=
1

dpP (Ω)
dω

(25)

Given pP (ω) : ∂uP (p;ω)
∂p

= 0, we have d
dω

∂uP (p;ω)
∂p

= ∂2uP (p;ω)
∂p2

· dp
P (ω)
dω

+ ∂2uP (p;ω)
∂ω∂p

· dω
dω

= 0. Therefore,

dx̂

dx

∣∣∣∣
pP (Ω)

= 1/3 ≤ 1 (26)

and FDE is belief-stable at x∗ = pP (Ω) if x̂(·) is differentiable.
Finally, assume, contrary to the proposition, that an FDE exists and that both of the

following conditions hold

uA(p
P (Ω); Ω, α, i) > uA(p

P (Ω); Ω, α, i), (27)

uA(p
P (Ω); Ω, α, i) > uA(p

P (Ω); Ω, α, i). (28)

In an FDE, the Agency discloses the state ω for all ω ∈ Ω. Since the Agency’s utility uA

is strictly concave in the policy, for any interior policy absent disclosure x ∈
(
pP (Ω), pP (Ω)

)
,

the set of states ω for which the Agency’s ideal point pA(pP (ω), α, i) is closer to x than to
pP (ω) would be a non-empty set. Therefore, any policy x∗ that sustains an FDE must be
x∗ ∈ {pP (Ω), pP (Ω)}.

Suppose x∗ = pP (Ω). Note that the Agency observing the state Ω prefers to conceal the
state given Inequality 28. The case of x∗ = pP (Ω) is symmetric, thus no FDE can exist.

2. The proof of sufficiency for the single-crossing condition is provided by Seidmann and
Winter (1997) and is omitted.
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Proposition 7

1. For the NDE to be an equilibrium, the Agency must prefer the non-disclosure policy pP0
to disclosing the true state ω for all ω ∈ Ω. The incentive compatibility condition is

uA(p
P
0 ;ω, α, i) ≥ uA(p

P (ω);ω, α, i) ∀ω ∈ Ω.

Given that pP (ω) = ω, this simplifies to

uA(p
P
0 ;ω, α, i) ≥ uA(ω;ω, α, i) ∀ω ∈ Ω.

2. For an interior equilibrium, the belief-stability condition dx̂
dx
|x=x∗ ≤ 1 is equivalent to

the condition derived from the Implicit Function Theorem

∂K(x, y;α, i = pP0 )

∂x

∣∣∣∣
x=pP0 , y=pP0

+
∂K(x, y;α, i = pP0 )

∂y

∣∣∣∣
x=pP0 , y=pP0

≤ 0.

We evaluate the two terms at the NDE, where x = pP0 , i = pP0 . First, consider the partial
derivative with respect to y. Given the strict concavity of of uP (·) in p, this term is strictly
negative.

∂K

∂y

∣∣∣∣
x=pP0 ,y=pP0

= E

[
∂2uP (p;ω)

∂p2

∣∣∣∣
p=pP0

∣∣∣∣ω ∈ N(pP0 )

]
< 0.

The core of the proof is to show that ∂A
∂x

is zero at this specific equilibrium. By the Leibniz
Integral Rule

∂A

∂x

∣∣∣∣
x=pP0

= ± ∂

∂p
uP (p;ω = pP0 )|p=pP0

· f(pP0 ) ·
∂

∂x
pP0 . (29)

By the model’s definition, the Policymaker’s ideal policy is pP (ω) = ω. This implies that
the Policymaker’s marginal utility is zero whenever the policy matches the state. Therefore,
∂A
∂x
|x=pP0

= 0 and the Non-Disclosure Equilibrium, if it exists, is belief-stable.

Proposition 8

The proof proceeds in two main steps. First, we establish the existence and uniqueness of
the threshold α∗. Second, for any α ≤ α∗, we establish the existence of a bounded interval
I∗(α) containing pP0 .

A partial disclosure equilibrium exists if there is a non-disclosure policy x ∈ Ω and a non-
empty, proper subset of states M ⊂ Ω such that: (i) uA(p

P (ω);ω, α, i) ≥ uA(x;ω, α, i) ∀ω ∈
M , uA(p

P (ω);ω, α, i) ≤ uA(x;ω, α, i) ∀ω /∈ M and (ii) x = argmaxp E[uP (p;ω)|ω /∈ M ]. The
Agency’s decision to disclose depends on the sign of the net gain from full disclosure of state ω,
defined as ∆(x, ω;α, i) := uA(p

P (ω);ω, α, i)− uA(x;ω, α, i). A partial disclosure equilibrium
is possible only if there exists an x such that the set M = {ω ∈ Ω | ∆(x, ω;α, i) ≥ 0} is
nonempty and is not equal to Ω.

We first show that M expands monotonically in α. Note that because uA is strictly
concave, the Agency discloses a fixed state ω over a fixed induced policy x when pP (ω) is
close to pA than x. As α increases, the Agency’s ideal point pA(pP (ω), α, i) moves closer to
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pP (ω). Thus, if a partial disclosure fails to exist for some (α0, i), it must also fail to exist for
all (α, i) such that α > α0. Similarly, if a partial disclosure exists for some (α0, i), it must
also exist for all (α, i) such that α ≤ α0.

Now consider the limit cases. At α = 1, the Agency’s ideal point is pA = pP (ω). For
any x ̸= pP (ω), ∆A(x, ω; 1, i) > 0. The Agency strictly prefers to disclose every state rather
than have any policy x ̸= pP (ω) implemented. The partial disclosure is not sustainable.
Conversely, at α = 0 there exists i for which the set of non-disclosure is non-empty. In
particular, if i = pP0 , a partial disclosure equilibrium can be sustained by the non-disclosure
policy x = pP0 . Since a partial disclosure equilibrium exists for α = 0 (for some i) but not
for α = 1 (for all i), and M is monotonically expanding in α, there must exist a unique
threshold α∗ ∈ (0, 1) such that a partial disclosure equilibrium exists for some i if and only
if α ≤ α∗.

Fix any α ∈ [0, α∗]. By definition of α∗, there exist at least one i that supports a partial
disclosure equilibrium. Let I∗(α) be the set of all such i. We must show that this non-
empty (by definition) interval is bounded and pP0 ∈ I∗(α). Given Agency’s utility function is
concave, for every α there exist unique ideal points I(α) and I(α) such that an Agency with
ideal point I(α) (respectively, I(α)) is indifferent between inducing the policy pP0 (through
non-disclosure) and inducing policy pP (Ω) (respectively, pP (Ω)) through disclosure of the
boundary state. That is, uA(p

P
0 ; Ω, α, I(α)) = uA(p

P (Ω); Ω, α, I(α)) and uA(p
P
0 ; Ω, 0, I) =

uA(p
P (Ω); Ω, 0, I).

These critical ideal points define an interval I∗(α) ⊆ [I(α), I(α)] ⊂ Ω. For any Agency’s
ideal point i ∈ I∗(α), a partial disclosure equilibrium can be sustained. Finally, while policy
pP0 is not necessarily the optimal policy absent disclosure, if the Agency cannot conceal
boundary states even when induced policy absent disclosure is pP0 , it never conceals states
in equilibrium.

Proposition 9

1. Consider an equilibrium characterized by a policy x∗ absent disclosure. By the implicit
function theorem and given equation 13,

∂x∗

∂i
= − ∂K(x, y;α, i)/∂i|x=x∗,y=x∗

∂K(x, y;α, i)/∂x|x=x∗,y=x∗
. (30)

We first determine the sign of the numerator, ∂K(x, y;α, i)/∂i|x=x∗,y=x∗ .

∂K(x, y;α, i)/∂i|x=x∗,y=x∗ =
∂

∂i

∫
Ω

∂

∂p
uP (p;ω)

∣∣∣∣
p=x∗

dF (ω|ω ∈ N(x∗, α, i)) =

∂

∂i

∫
ω∈N(x∗,α,i)

∂
∂p
uP (p;ω)|p=x∗dF (ω)∫

ω∈N(x∗,α,i)
dF (ω)

(31)

Given Equations 16

∂

∂i
K(x, y;α, i)

∣∣∣∣
x=x∗,y=x∗

=
∂

∂i

A

B
=

∂A/∂i ·B − ∂B/∂i · A
B2

. (32)
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Because A(x = x∗, y = x̂(x)) = 0, the sign of ∂K(x, y;α, i)/∂i at equilibrium is determined
by the sign of ∂A/∂i. By Leibniz Integral Rule, when M(x∗, α, i) = [x∗,M(x∗, α, i)]

∂A/∂i = − ∂

∂p
uP (p;ω = M(x∗, α, i))|p=x∗ · f(M(x∗, α, i)) · ∂

∂i
M(x∗, α, i) < 0, (33)

where ∂
∂p
uP (x

∗,M(x∗, α, i)) > 0 follows uP (.) concavity; and given concavity of uA(·) holds,
an increase in the Agency’s ideal point i shifts its indifference points outwards, so ∂M/∂i > 0.
Alternatively, if the disclosure interval is M(x∗, α, i) = [M(x∗, α, i), x∗],

∂A/∂i =
∂

∂p
uP (p;ω = M(x∗, α, i))|p=x∗ · f(M(x∗, α, i)) · ∂

∂i
M(x∗, α, i) < 0, (34)

where ∂
∂p
uP (x

∗,M(x∗, α, i)) < 0 follows uP (.) concavity and ∂
∂i
M(x∗, α, i) > 0 given Agency’s

objective function satisfies concavity. Therefore

∂K(x, y;α, i)/∂i|x=x∗,y=x∗ < 0 (35)

and

sign
∂x∗

∂i
= sign

∂K(x, y;α, i)

∂x

∣∣∣∣
x=x∗,y=x∗

. (36)

By the Implicit Function Theorem

dx̂(x)

dx
= −

∂K(x,y;α,i)
∂x

∣∣
y=x̂(x)

∂K(x,y;α,i)
∂y

∣∣
y=x̂(x)

. (37)

Given x̂(x) is optimal given no disclosure, ∂K(x,y;α,i)
∂y

∣∣
y=x̂(x)

< 0. Therefore,{
dx̂(x)
dx

≤ 1, ∂K(x,y=x̂(x);α,i)
∂x

+ ∂K(x,y=x̂(x);α,i)
∂y

≤ 0,
dx̂(x)
dx

> 1, ∂K(x,y=x̂(x);α,i)
∂x

+ ∂K(x,y=x̂(x);α,i)
∂y

> 0.
(38)

Finally, by the chain rule

∂K(y = x∗, x = x∗;α, i)/∂x∗ =
∂K(x, y;α, i)

∂y

∣∣∣∣
y=x∗,x=x∗

+
∂K(x, y;α, i)

∂x

∣∣∣∣
y=x∗,x=x∗

. (39)

Combining equations 39, 38, and 36, belief-stable equilibria exhibit ∂x∗/∂i ≤ 0 (non-
increasing x∗ as i increases), while belief-unstable equilibria exhibit ∂x∗/∂i ≥ 0.

2. Consider function K(·) defined at 13. By the implicit function theorem

∂x∗

∂α
= −∂K(x, y;α, i)/∂α|x=x∗,y=x∗

∂K(x, y;α, i)/∂x|x=x∗,y=x∗
. (40)
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Following logic equivalent to that in part 1 of Proposition 9, the sign of ∂x∗

∂α
in belief-stable

equilibria is determined by the sign of ∂A/∂α. If the disclosure interval is M(x∗, α, i) =
[x∗,M(x∗, α, i)],

∂A/∂α = − ∂

∂p
uP (p;ω = M(x∗, α, i)) |p=x∗ ·f(M(x∗, α, i)) · ∂

∂α
M(x∗, α, i) < 0, (41)

where ∂
∂α
M(x∗, α, i) > 0 follows monotonicity argument from Proposition 8. If M(x∗, α, i) =

[M(x∗, α, i), x∗],

∂A/∂α =
∂

∂p
uP (p;ω = M(x∗, α, i)) |p=x∗ ·f(M(x∗, α, i)) · ∂

∂α
M(x∗, α, i) > 0, (42)

where ∂
∂α
M(x∗, α, i) < 0 follows monotonicity argument from Proposition 8.

Proposition 10

1. Consider the case where the equilibrium non-disclosure policy satisfies x∗ ≤ i; the argu-
ment for x∗ > i is symmetric. In this case, the disclosure interval is M(i) = [x∗,M(x∗, α, i)],
where the upper boundary M is defined by the Agency’s indifference.

From Proposition 9, in any belief-stable partial disclosure equilibrium, the equilibrium
non-disclosure policy x∗ is a strictly decreasing function of the Agency’s bias i. Therefore,
dx∗

di
< 0. The lower boundary strictly decreases.

The upper boundary M is a function of both the equilibrium policy x∗ and the bias i.
Its total derivative with respect to i is given by the chain rule:

dM

di
=

∂M

∂i︸︷︷︸
Direct Effect

+
∂M

∂x∗ · dx
∗

di︸ ︷︷ ︸
Indirect Effect

.

Holding x∗ constant, an increase in bias i shifts the Agency’s ideal point further from x∗,
making it more willing to disclose states far from x∗. Therefore, ∂M

∂i
> 0. Holding i constant,

a decrease in the non-disclosure policy x∗ makes non-disclosure a worse outside option for
the Agency, strengthening its incentive to disclose. Thus, ∂M

∂x∗ < 0.
The direct and indirect effects are mutually reinforcing, causing the upper boundary to

strictly increase: dM
di

> 0. Since the lower boundary x∗ strictly decreases and the upper

boundary M strictly increases with i, it follows that for any i2 > i1, we have M(i1) ⊂ M(i2).
The disclosure interval is strictly expanding in i.

2. Consider the disclosure interval M = [x∗,M(x∗(α), α, i)]. From Proposition 9, the
equilibrium policy x∗ is a strictly decreasing function of state-dependence α. Thus, dx∗

dα
< 0.

The total derivative of the upper boundary with respect to α is:

dM

dα
=

∂M

∂α
+

∂M

∂x∗ · dx
∗

dα
,

where ∂M
∂α

> 0 and ∂M
∂x∗ < 0. The total derivative is positive.

Since the lower boundary strictly decreases and the upper boundary strictly increases
with α, the disclosure interval M is strictly expanding in the Agency’s preference state-
dependence.
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Proposition 11

The proof relies on a key property of the Policymaker’s best-response function, x̂(x; i). For
any fixed interior policy x, the function x̂(x; i) is strictly decreasing in the Agency’s bias, i.

Assume, without loss of generality, that at i = pP0 , there exists an equilibrium x∗ > pP0 .
Now, consider a small increase in the Agency’s bias to i′ = pP0 + ϵ for some small ε > 0. For
ε small enough and given continuity of x̂(·) there will be an equilibrium x∗ > i.

Assume that at i = pP0 , the unique fixed point of x̂(x) is x = pP0 . Because the NDE is
stable, this implies that for all x > pP0 , x̂(x; i = pP0 ) < x, and for all x < pP0 , x̂(x; i = pP0 ) > x.
Consider any i > pP0 . The best-response function for this new bias, let’s call it x̂i(x), must
lie at or below the original function for i = pP0 , i.e., x̂i(x) ≤ x̂pP0

(x) for all x. This rules out

the existence of any new equilibrium at a policy greater than pP0 . Thus, any belief-stable
equilibrium x∗ for an agent with bias i > pP0 must satisfy x∗ ≤ pP0 .

Proposition 12

When the Policymaker receives message m and signal s(m) = T , the Policymaker imple-
ments policy equal to the message observed. Next, signal s(m) = ∅ and signal s(m) = F
both should produce state-independent policies in equilibrium. This implies that Agency’s
distortion must replicate prior distribution on the disclosure interval. Denote policy the Pol-
icymaker implements following signal s(m) = ∅ as z and policy the Policymaker implements
following signal s(m) = F as x.

Next, consider an Agency with an ideal point i. Note that if an Agency with state’s
realization ω̃ prefers to disclose its information to the Policymaker instead of distorting it,
any Agency with state ω : |ω − i| < |ω̃ − i| will disclose its state instead of concealing it.
In this case, disclosing state produces policy q · ω + (1 − q) · z while distorting it leads to
policy q ·x+(1− q) ·z. Thus, there exists a threshold y such that the Agency discloses states
ω ∈ [y, 2 · i− y] ∩ [−1, 1] and distorts states otherwise.

It immediately follows from the previous paragraph that when the Policymaker observes
message m and signal s(m) = F, she implements policy x∗ = E[ω|ω /∈ [y, 2 · i− y]] = i·(i−y)

−1+i−y

when 2 · i− y < 1 and x∗ = y−1
2

otherwise.
If the Policymaker observes s(m) = ∅, she implements equilibrium policy

z∗ = E[ω|s(m) = ∅] = E[Pr[ω ∈ [y, 2 · i− y]] ·m+ Pr[ω /∈ [y, 2 · i− y]] · x] = 0. (43)

Because both Agency that discloses information and the Agency that does not have equal
probability to generate not-informative message, regardless of y, observing s(m) = ∅ conveys
no information beyond prior about state’s realization.

In any equilibrium, the following holds

y = x∗ · q + z∗ · (1− q) =
i · (i− y) · q
−1 + i− y

.

We only focus on belief stable-equilibria, thus,

y∗ =
i · (1 + q)− 1 +

√
(1− i(1 + q))2 − 4 · i2 · q

2
.

35



Proposition 13

1.
∂y∗

∂i
=

(1 + q) ·
√
−4 · i2 · q + (1− i · (1− q))2 − (1− i · (1− q)2 + q)

2 ·
√

−4 · i2 · q + (1− i · (1 + q))2

Consider the numerator we denote as

Ni := (1 + q) ·
√

−4 · i2 · q + (1− i · (1− q))2 − (1− i · (1− q)2 + q).

Note that numerator is always negative when q ∈ [0, 1], i ∈ [0, 1]. We will show that

(1 + q) ·
√

−4 · i2 · q + (1− i · (1 + q))2 < (1− i · (1 + q)) · (1 + q) + 4 · i · q

Squaring both sides, we need to show

(1 + q)2((1− i · (1 + q))2 − 4 · i2 · q) < ((1− i · (1 + q)) · (1 + q) + 4 · i · q)2

which simplifies to
i · (1− q)2 < 2 + 2 · q

Since i ∈ [0, 1] and q ∈ [0, 1], we have i · (1 − q)2 ≤ (1 − q)2 ≤ 1 and 2 + 2 · q ≥ 2. Since
1 < 2, the inequality i · (1 − q)2 < 2 + 2 · q holds. Therefore, the numerator N < 0, and
hence ∂y∗

∂i
< 0.

Because ∂y∗

∂i
< 0, the lower disclosure boundary decreases in i while the upper disclosure

boundary increases in i.
2.

∂y∗

∂q
= i ·

√
−4 · i2 · q + (1− i · (1− q))2 − (1 + i · (1− q))

2 ·
√

−4 · i2 · q + (1− i · (1 + q))2

Consider the numerator denoted as

Nq :=
√

−4 · i2 · q + (1− i · (1− q))2 − (1 + i · (1− q)).

We aim to show that
√

−4 · i2 · q + (1− i · (1− q))2 ≤ (1 + i · (1− q)). Since both sides
are non-negative, it is sufficient to show that their squares satisfy the inequality:

−4 · i2 · q + (1− i · (1− q))2 ≤ (1 + i · (1− q))2

Rearranging terms yields:

(1− i · (1− q))2 − (1 + i · (1− q))2 ≤ 4 · i2 · q

Factoring the difference of squares, we have:

[(1− i · (1− q))− (1 + i · (1− q))] · [(1− i · (1− q)) + (1 + i · (1− q))] ≤ 4 · i2 · q

[−2 · i · (1− q)] · [2] ≤ 4 · i2 · q

−4 · i · (1− q) ≤ 4 · i2 · q
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For i ≥ 0, dividing both sides by 4i (when i > 0) or observing directly (when i = 0), we
require:

−(1− q) ≤ i · q

q − 1 ≤ i · q

q(1− i) ≤ 1

Since 0 ≤ q ≤ 1 and 0 ≤ i ≤ 1, it follows that 0 ≤ 1− i ≤ 1, and thus 0 ≤ q(1− i) ≤ 1. The
inequality q(1− i) ≤ 1 always holds. Therefore, Nq ≤ 0.

Because of that, y∗q
′ ≤ 0 and disclosure interval expands as q increases.

Proposition 14

Given the beliefs β(·|T,m(.)), the Policymaker’s policy choice p∗(T ) is optimal by definition
for on-path messages. For an off-path message Toff , the belief is concentrated on a single
state ω(Toff ) = argmaxω̃∈Toff

|i− ω̃|, so p∗(Toff ) = ω(Toff ) is optimal.
If ω ∈ MG: By sending m∗(ω) = {ω}, the Agency’s utility is −(i− ω)2. If it deviates to

send NG, its utility is −(i−xG)
2. By definition of xG, −(i−ω)2 ≥ −(i−xG)

2. If it deviates to
some Toff (where ω ∈ Toff ), the policy will be ω(Toff ). The utility is −(i−ω(Toff ))

2. Since
ω(Toff ) is the state in Toff furthest from i, and ω ∈ Toff , it must be that |i−ω(Toff )| ≥ |i−ω|.
Thus, −(i− ω(Toff ))

2 ≤ −(i− ω)2. So, no profitable deviation to Toff .
If ω ∈ NG: By sending m∗(ω) = NG, the Agency’s utility is −(i− xG)

2. If it deviates to
send {ω}, its utility is −(i − ω)2. By definition of xG, −(i − xG)

2 > −(i − ω)2. Deviations
to Toff are deterred as above, as −(i− ω(Toff ))

2 ≤ −(i− ω)2 < −(i− xG)
2.

Finally, to show that proposed beliefs are consistent, we construct a sequence of strictly
mixed strategy profiles (mn(.), pn(.)) that converges to (m∗(.), p∗(.)) and corresponding se-
quence of Bayesian beliefs βn that converges to β. Denote the family of all off-path messages
available for the Agency observing ω for which ω is the furthest from the Agency’s ideal
point i as T off (ω) := {T : ω = ω(T ), ω ∈ T, T ̸= {ω}, T ̸= NG}.

We construct (mn(.), pn(.)) as follows. Let P n(T |ω) denote the probability type ω sends a
message T . Suppose the Agency observing realization ω sends its equilibrium message m∗(ω)
with probability P n(m∗(ω)|ω) = 1 − 1/n − 1/n2. With total probability 1/n, the Agency
sends an off-path message Toff selected uniformly from the set T off (ω). With the remaining
total probability 1/n2, the Agency sends an off-path message Toff selected uniformly from
the set Toff (ω)\T off (ω).

As n → ∞, for an off-path Toff , Bayes’ rule for βn(ω̃|Toff ,m(.)) requires

βn(ω̃|Toff ,m(.)) =
P n(Toff |ω̃)f(ω̃|ω̃ ∈ Toff )∫

ω∈Toff
P n(Toff |ω)dF (ω|ω ∈ Toff )

.

If ω̃ = ω(Toff ), the numerator term P n(Toff |ω̃) is O(1/n). For any other ω′ ∈ Toff ,
Pn(Toff |ω′) is O(1/n2). Thus, in the limit, the probability mass concentrates on ω(Toff ).
This ensures that limn→∞ βn(·|Toff ,m(.)) = β(·|Toff ,m(.)) as specified. The on-path beliefs
are similarly consistent.
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