Non-monotonic Disclosure in Policy Advice

Anna Denisenko (University of Chicago)
joint with Catherine Hafer (NYU) and Dimitri Landa (NYU)

2025

Strategic communications between policymakers and bureaucratic agencies

Strategic communications between policymakers and bureaucratic agencies

- Communications often occur with verifiable information
 - internal norms or rules

Strategic communications between policymakers and bureaucratic agencies

- Communications often occur with verifiable information
 - internal norms or rules
- Policymakers (elected officials) and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term public opinion volatility

Strategic communications between policymakers and bureaucratic agencies

- Communications often occur with verifiable information
 - internal norms or rules
- Policymakers (elected officials) and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term public opinion volatility

Disclosure Games

 Preference misalignment under verifiable information → full disclosure (Milgrom (1981), Grossman (1981))

Strategic communications between policymakers and bureaucratic agencies

- Communications often occur with verifiable information
 - internal norms or rules
- Policymakers (elected officials) and bureaucrats preferences are frequently misaligned
 - bureaucrats less affected by short-term public opinion volatility

Disclosure Games

- Preference misalignment under verifiable information → full disclosure (Milgrom (1981), Grossman (1981))
 - monotonicity
 - greater state-dependence of the sender

Some Results

When ex-ante preferences of sender and receiver sufficiently co-align, *unraveling* can stop before being complete

Some Results

- When ex-ante preferences of sender and receiver sufficiently co-align, unraveling can stop before being complete
- 2 Characterize conditions for
 - Unique Full Disclosure Equilibrium (FDE)
 - Multiplicity of Sequential Equilibria

Some Results

- ① When ex-ante preferences of sender and receiver sufficiently co-align, *unraveling* can stop before being complete
- 2 Characterize conditions for
 - Unique Full Disclosure Equilibrium (FDE)
 - Multiplicity of Sequential Equilibria
- 3 Equilibria with contrary comparative statics
 - ullet Higher ex-ante preference misalignment o less informative communication
 - \rightarrow not belief-stable
 - Higher ex-ante preference misalignment \rightarrow more informative communication
 - \rightarrow belief-stable

Stylized Example

Consider the U.S. Food and Drug Administration (FDA) and Policymakers (PMs)

- FDA has private information about trials
- \bullet FDA \rightarrow
 - strict regulations → delay beneficial drugs;
 - loose regulations \rightarrow introduce harming drugs.
- For PMs public/industry pressure requires rapid responses
- FDA has discretion over disclosure

More Examples

- Consumer Financial Protection Bureau
 - access to information that could be used contrary to its mission \rightarrow re business regulations;
 - incentives to conceal.
- Internal Revenue Service
 - preferences for uniform enforcement;
 - private information re non-compliance statistical likelihood;
 - incentives to conceal from opposed policymaker.
- Central Intelligence Agency (Bay of Pigs)
 - information re conditional mission success;
 - incentives to conceal from more risk averse policymakers.
- USSR Ministry of Energy and Electrification (Chernobyl)
 - private information re nature of disaster(s);
 - incentives to limit information about disaster extent to avoid repercussions.

Our Contributions

- Full disclosure in games of verifiable advice:
 - Milgrom (1981), Grossman (1981), Milgrom (2008)
 - Seidmann and Winter (1997)
 - o.f. concave in action
 - sender's more state-dependent than receiver's
- Partial disclosure in games of verifiable advice
 - uninformed sender Dye (1985), Jung and Kwon (1988)
 - uncertainty about S's preferences Wolinsky (2003), Dziuda (2011)
 - multidimensional advice Callander, Lambert and Matouschek (2021)
 - disclosure reward Denisenko, Hafer and Landa (2024)
- Games of communication within hierarchy (cheap talk)
 - divergence in preferences → worse communication: seminal paper by Crawford and Sobel (1982), Gilligan and Kreihbiel (1987), Austen-Smith (1990, 1993)
 - Callander (2008)

Road Map

- Introduction
- 2 Model
 - Game Structure
 - Equilibrium Characterization
 - Effects of Agency's Policy Preference
 - Belief-Stable Equilibria
- Generalization
- 4 Agency's Vagueness
- Summary

Two players: Agency (it) and Policymaker (she).

Nature determines realization of the state of the world (ω) $\omega \sim U[-1,1]$

1	Nature determines realization of the state of the world (ω)	$\omega \sim \mathit{U}[-1,1]$
2	Agency observes state (ω)	ω

1	Nature determines realization of the state of the world (ω)	$igg \ \omega \sim \mathit{U}[-1,1]$
2	Agency observes state (ω)	ω
3	Agency chooses message (m) to send to Policymaker	$m \in \{\omega,\varnothing\}$

1	Nature determines realization of the state of the world (ω)	$\omega \sim \mathit{U}[-1,1]$
2	Agency observes state (ω)	ω
3	Agency chooses message (m) to send to Policymaker	$\mathit{m} \in \{\omega,\varnothing\}$
4	Policymaker observes m and chooses policy (p)	$p \in \mathbb{R}$

Agency:

$$u_A(p) = -(p-i)^2$$

Agency:

$$u_{\mathcal{A}}(p) = -(p-i)^2,$$

where i is Agency's ideal point.

Agency:

$$u_A(p) = -(p-i)^2,$$

where i is Agency's ideal point.

Policymaker:

$$u_P(p) = -(p - \omega)^2.$$

Agency:

$$u_A(p) = -(p-i)^2,$$

where *i* is Agency's ideal point.

Policymaker:

$$u_P(p) = -(p-\omega)^2.$$

Solution Concept: Sequential Equilibrium.

Road Map

- Introduction
- 2 Model
 - Game Structure
 - Equilibrium Characterization
 - Effects of Agency's Policy Preference
 - Belief-Stable Equilibria
- Generalization
- 4 Agency's Vagueness
- Summary

Equilibrium Characterization

In every equilibrium

Policymaker

- $p^*(m = \omega) = \omega$ when $m \neq \emptyset$;
- $p^*(m = \varnothing) = x^* \equiv E[\omega|m^*(\omega) = \varnothing],$ where $m^*(\omega)$ is A's eq. disclosure strategy.

Equilibrium Characterization

In every equilibrium

Policymaker

- $p^*(m = \omega) = \omega$ when $m \neq \emptyset$;
- $p^*(m = \varnothing) = x^* \equiv E[\omega|m^*(\omega) = \varnothing],$ where $m^*(\omega)$ is A's eq. disclosure strategy.

Agency

ullet discloses ω when

$$\omega \in [i - \sqrt{(x^* - i)^2}, i + \sqrt{(x^* - i)^2}] \cap [-1, 1];$$

 \bullet conceals ω otherwise.

Equilibrium Characterization

In every equilibrium

Policymaker

- $p^*(m = \omega) = \omega$ when $m \neq \emptyset$;
- $p^*(m = \emptyset) = x^* \equiv E[\omega | m^*(\omega) = \emptyset],$ where $m^*(\omega)$ is A's eq. disclosure strategy.

Agency

ullet discloses ω when

$$\omega \in [i - \sqrt{(x^* - i)^2}, i + \sqrt{(x^* - i)^2}] \cap [-1, 1];$$

 \bullet conceals ω otherwise.

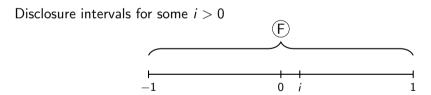
$$i \ge 0 \rightarrow \text{disclose } \omega \in [x^*, 2 \cdot i - x^*] \cap [-1, 1];$$

 $i \le 0 \rightarrow \text{disclose } \omega \in [2 \cdot i - x^*, x^*] \cap [-1, 1].$

Equilibrium Disclosure Strategies

There can be a maximum of three disclosure strategies supported in equilibrium

Full disclosure (F)

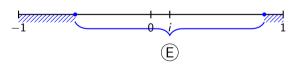


Equilibrium Disclosure Strategies

There can be a maximum of three disclosure strategies supported in equilibrium

- Full disclosure (F)
- ② Partial disclosure:
 - Expansive disclosure strategy (E)

Disclosure intervals for some i > 0

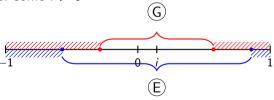


Equilibrium Disclosure Strategies

There can be a maximum of three disclosure strategies supported in equilibrium

- Full disclosure (F)
- ② Partial disclosure:
 - Expansive disclosure strategy (E),
 - Guarded disclosure strategy (G).

Disclosure intervals for some i > 0

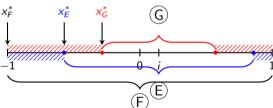


Equilibria

There can be a maximum of three equilibria

- Full disclosure equilibrium;
- 2 Partial disclosure equilibria:
 - Guarded equilibrium,
 - Expansive equilibrium.

Disclosure intervals for some i > 0



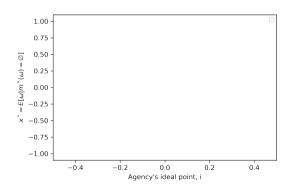
Road Map

- Introduction
- 2 Model
 - Game Structure
 - Equilibrium Characterization
 - Effects of Agency's Policy Preference
 - Effect of Policy Preferences on Policy Absent Disclosure
 - Effect of Policy Preferences on Disclosure
 - Belief-Stable Equilibria
- Generalization
- 4 Agency's Vagueness
- Summary

Prop.1

Increasing i,

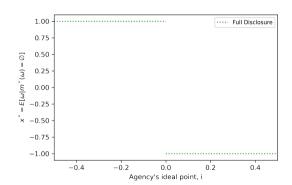
① no effect on $x_F^* = E[\omega | m^*(\omega) = \varnothing]$ in full disclosure equilibrium, $i \neq 0$;



Prop.1

Increasing i,

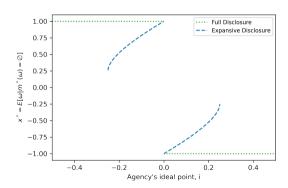
① no effect on $x_F^* = E[\omega | m^*(\omega) = \varnothing]$ in full disclosure equilibrium, $i \neq 0$;



Prop.1

Increasing i,

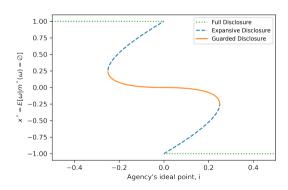
- ① no effect on $x_F^* = E[\omega | m^*(\omega) = \varnothing]$ in full disclosure equilibrium, $i \neq 0$:
- ② increases $x_E^* = E[\omega | m^*(\omega) = \varnothing]$ in expansive equilibrium, $i \neq 0$;



Prop.1

Increasing i,

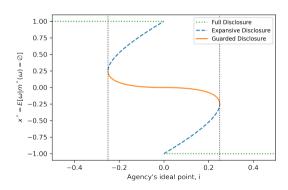
- ① no effect on $x_F^* = E[\omega | m^*(\omega) = \varnothing]$ in full disclosure equilibrium, $i \neq 0$:
- ② increases $x_E^* = E[\omega | m^*(\omega) = \varnothing]$ in expansive equilibrium, $i \neq 0$; and
- 3 decreases $x_G^* = E[\omega | m^*(\omega) = \varnothing]$ in guarded equilibrium.



Prop.1

Increasing i,

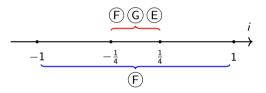
- ① no effect on $x_F^* = E[\omega | m^*(\omega) = \varnothing]$ in full disclosure equilibrium, $i \neq 0$:
- ② increases $x_E^* = E[\omega|m^*(\omega) = \varnothing]$ in expansive equilibrium, $i \neq 0$; and
- 3 decreases $x_G^* = E[\omega | m^*(\omega) = \varnothing]$ in guarded equilibrium.



Effect of A's Policy Preference (i) on Full Disclosure Equilibrium Uniqueness

Prop.2

- For all i there exists full disclosure equilibrium;
- ② If and only if i ∈ [-1/4, 1/4], there are two partial disclosure equilibria: guarded and expansive.



Assume $i > 0 \rightarrow$

Agency discloses ω to PM when

$$\omega \in [x^*, 2 \cdot i - x^*] \cap [-1, 1],$$

and conceals information otherwise.

Assume $i > 0 \rightarrow$

Agency discloses ω to PM when

$$\omega \in [x^*, 2 \cdot i - x^*] \cap [-1, 1],$$

and conceals information otherwise.

Departure of A's preference from zero (increasing |i|) has direct

Assume $i > 0 \rightarrow$

Agency discloses ω to PM when

$$\omega \in [\mathbf{x}^*, 2 \cdot \mathbf{i} - \mathbf{x}^*] \cap [-1, 1],$$

and conceals information otherwise.

Departure of A's preference from zero (increasing |i|) has direct and indirect effects on disclosure.

Assume $i > 0 \rightarrow$

Agency discloses ω to PM when

$$\omega \in [\mathbf{x}^*, 2 \cdot \mathbf{i} - \mathbf{x}^*] \cap [-1, 1],$$

and conceals information otherwise.

Departure of A's preference from zero (increasing |i|) has direct and indirect effects on disclosure.

- Direct effect always (weakly) improves communication between A and PM
- Indirect effect
 - → Improves communication in guarded equilibrium

Assume $i > 0 \rightarrow$

Agency discloses ω to PM when

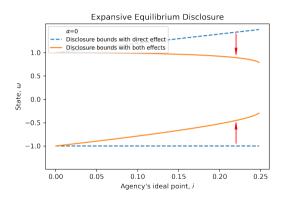
$$\omega \in [\mathbf{x}^*, 2 \cdot \mathbf{i} - \mathbf{x}^*] \cap [-1, 1],$$

and conceals information otherwise.

Departure of A's preference from zero (increasing |i|) has direct and indirect effects on disclosure.

- Direct effect always (weakly) improves communication between A and PM
- Indirect effect
 - → Improves communication in **guarded** equilibrium
 - $\rightarrow \mbox{ Reduces communication in } \mbox{expansive} \\ \mbox{equilibrium}$

Effect of A's Policy Preference (i) on Expansive Disclosure

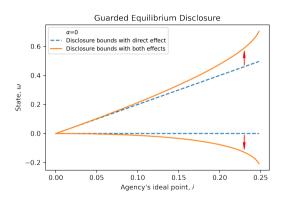


Prop.3

Communication between actors

 \rightarrow deteriorates in |i| in expansive equilibrium;

Effect of A's Policy Preference (i) on Guarded Disclosure

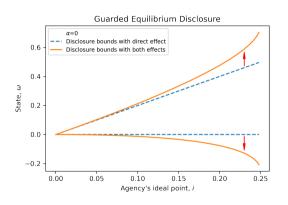


Prop.3

Communication between actors

- \rightarrow deteriorates in |i| in expansive equilibrium;
- \rightarrow *improves* in |i| in guarded equilibrium;

Effect of A's Policy Preference (i) on Guarded Disclosure



Prop.3

Communication between actors

- ightarrow deteriorates in |i| in expansive equilibrium;
- ightarrow improves in |i| in guarded equilibrium; and
- \rightarrow *not affected* by |i| in full disclosure equilibrium.

Comparative Statics Underlying Intuition

Effect of Preferences Divergence (|i|) on Equilibrium Disclosure

Parameter *i* captures A's policy preference.

Effect of Preferences Divergence (|i|) on Equilibrium Disclosure

Parameter i captures A's policy preference.

Parameter |i| represents **ex-ante** divergence between actors' preferences.

Biased Policymaker

Prop.3

Communication between actors

- → deteriorates in ex-ante preference divergence in expansive equilibrium;
- → improves in ex-ante preference divergence in guarded equilibrium; and
- → not affected by ex-ante preference divergence in full disclosure equilibrium.

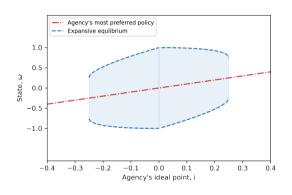
Road Map

- Introduction
- 2 Model
 - Game Structure
 - Equilibrium Characterization
 - Effects of Agency's Policy Preference
 - Belief-Stable Equilibria
- 3 Generalization
- 4 Agency's Vagueness
- Summary

We have multiple equilibria with contrary comparative statics:

- Expansive → communication deteriorates in ex-ante preference misalignment
- Guarded → communication improves in ex-ante preference misalignment

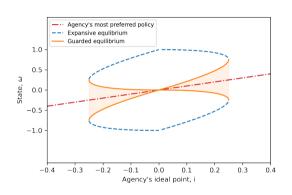
All survive standard refinements \rightarrow Which one should we expect?



We have multiple equilibria with contrary comparative statics:

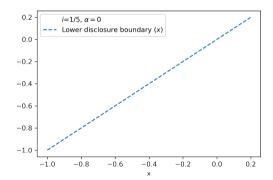
- Expansive → communication deteriorates in ex-ante preference misalignment
- Guarded → communication improves in ex-ante preference misalignment

All survive standard refinements \rightarrow Which one should we expect?



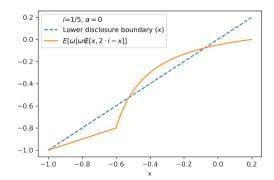
For $i \ge 0$ ($i \le 0$), the lower (upper) bound of the Agency's disclosure coincides with policy implemented absent disclosure.

When
$$i \ge 0$$
, $[i - \sqrt{(x-i)^2}, i + \sqrt{(x-i)^2}] = [x, 2 \cdot i - x]$.



For $i \ge 0$ ($i \le 0$), the lower (upper) bound of the Agency's disclosure coincides with policy implemented absent disclosure.

When
$$i \ge 0$$
, $[i - \sqrt{(x-i)^2}, i + \sqrt{(x-i)^2}] = [x, 2 \cdot i - x]$.

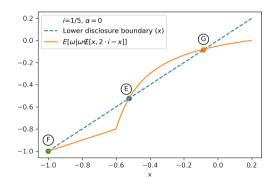


For $i \geq 0$ ($i \leq 0$), the lower (upper) bound of the Agency's disclosure coincides with policy implemented absent disclosure.

Three disclosure strategies that can be supported in equilibrium:

- Full disclosure:
- Expansive partial disclosure;
- 3 Guarded partial disclosure.

When $i \ge 0$, $[i - \sqrt{(x-i)^2}, i + \sqrt{(x-i)^2}] = [x, 2 \cdot i - x]$.

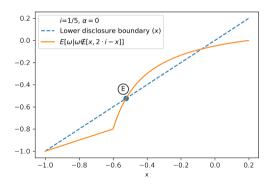


For $i \geq 0$ ($i \leq 0$), the lower (upper) bound of the Agency's disclosure coincides with policy implemented absent disclosure.

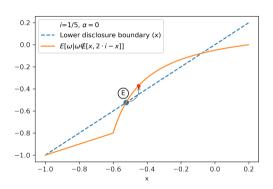
Three disclosure strategies that can be supported in equilibrium:

- Full disclosure:
- ② Expansive partial disclosure;
- 3 Guarded partial disclosure.

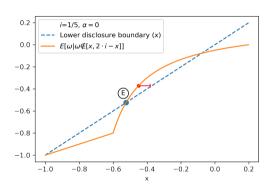
When $i \ge 0$, $[i - \sqrt{(x-i)^2}, i + \sqrt{(x-i)^2}] = [x, 2 \cdot i - x]$.



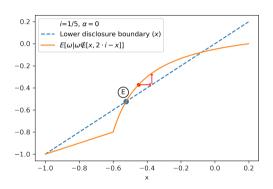
Imagine there is slight perturbation to Policymaker's beliefs in **expansive** equilibrium.



Imagine there is slight perturbation to Policymaker's beliefs in **expansive** equilibrium.

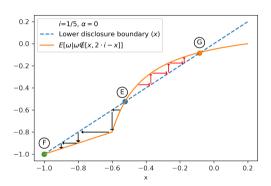


Imagine there is slight perturbation to Policymaker's beliefs in **expansive** equilibrium.



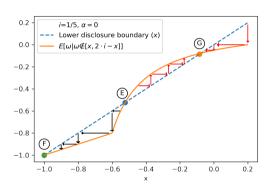
Imagine there is slight perturbation to Policymaker's beliefs in **expansive** equilibrium.

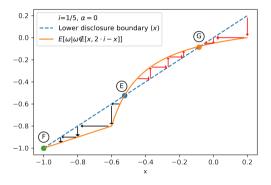
Regardless of direction of perturbation, expansive equilibrium will 'collapse.'



Def.1

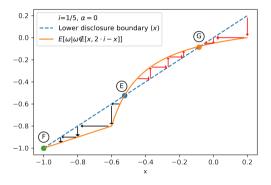
Consider an equilibrium (σ,μ) Let μ_j^ε be j's perturbed system of beliefs Take σ^ε , seq. rational given $(\mu_j^\varepsilon,\mu_{-j})$ Let $\hat{\mu}_j^\varepsilon$ be consistent with σ^ε If there exists an $\varepsilon>0$ such that, for every μ_j^ε and y that satisfies $|\mu_j^\varepsilon(y)-\mu_j(y)|<\varepsilon$, $|\hat{\mu}_j^\varepsilon(y)-\mu_j(y)|\leq |\mu_j^\varepsilon(y)-\mu_j(y)|$ is satisfied \Rightarrow Equilibrium (σ,μ) is **belief-stable** (for j)





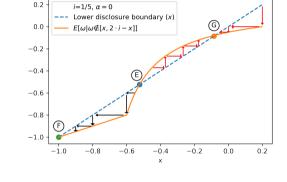
Prop.4

Expansive equilibrium is not belief-stable



Prop.4

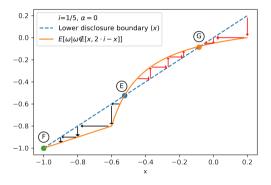
- Expansive equilibrium is not belief-stable;
- ② Guarded equilibrium is belief-stable when $|i| \neq 1/4$;



Prop.4

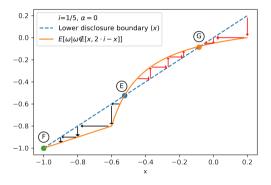
- Expansive equilibrium is not belief-stable;
- ② Guarded equilibrium is belief-stable when $|i| \neq 1/4$;

 \Rightarrow Corollary 1. Equilibrium is belief-stable \Leftrightarrow equilibrium communication improves in preference divergence. Equilibrium is not belief-stable \Leftrightarrow equilibrium communication worsens in preference divergence.



Prop.4

- Expansive equilibrium is not belief-stable;
- ② Guarded equilibrium is belief-stable when $|i| \neq 1/4$;
- 3 Full disclosure is belief-stable



Prop.4

- Expansive equilibrium is not belief-stable;
- ② Guarded equilibrium is belief-stable when $|i| \neq 1/4$;
- 3 Full disclosure is belief-stable when $i \neq 0$.

Extent of Belief-Stability

Def.2

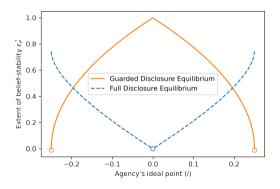
 ε_j^* the **extent of belief-stability of** (σ,μ) **for player j** when it is the largest value $\varepsilon>0$ such that, for every μ_j^ε that satisfies $|\mu_j^\varepsilon(y)-\mu_j(y)|<\varepsilon$, condition $|\hat{\mu}_j^\varepsilon(y)-\mu_j(y)|\leq |\mu_j^\varepsilon(y)-\mu_j(y)|$ is satisfied for all decision nodes y assigned to j.

Extent of Belief-Stability

Prop.5

As ex-ante preference divergence (|i|) between actors decreases,

- 4 the extent of belief stability of the full disclosure equilibrium decreases: and
- 2 the extent of belief stability of the guarded equilibrium increases.



Road Map

- Introduction
- 2 Model
- 3 Generalization
- 4 Agency's Vagueness
- Summary

General Model: Actors and Timing

Two players: the Agency (it) and the Policymaker (she).

1	Nature determines state of the world $\omega \in \Omega$: Ω is compact and $conv(\Omega) = [\underline{\Omega}, \overline{\Omega}]$	$\omega \sim F(\cdot)$ such that $\int_{\overline{\Omega}}^{\overline{\Omega}} x \cdot f(x) dx = 0$
2	Agency observes ω	ω
3	Agency chooses message (m) to send to Policymaker	$ extbf{\textit{m}} \in \{\omega, \varnothing\}$
4	Policymaker observes m and chooses policy (p) to implement	$p \in \mathbb{R}$

 $u_P(p) = -(p - \omega)^2$, $u_A(p) = -(p - \alpha \cdot \omega + (1 - \alpha) \cdot i)^2$

General Model: Actors and Timing

Two players: the Agency (it) and the Policymaker (she).

1	Nature determines state of the world $\omega \in \Omega$: Ω is compact and $conv(\Omega) = [\underline{\Omega}, \overline{\Omega}]$	$\omega \sim F(\cdot)$ such that $\int_{\overline{\Omega}}^{\overline{\Omega}} x \cdot f(x) dx = 0$
2	Agency observes ω	ω
3	Agency chooses message (m) to send to Policymaker	$m \in \{\omega,\varnothing\}$
4	Policymaker observes m and chooses policy (p) to implement	$p \in \mathbb{R}$

$$u_P(p) = -(p - \omega)^2$$
, $u_A(p) = -(p - 0 \cdot \omega + (1 - 0) \cdot i)^2$

General Model: Equilibria Characterization

Prop.6

In all equilibria

$$p^* = \begin{cases} m \text{ if } m \neq \varnothing, \\ x^* \text{ if } m = \varnothing \end{cases} ; \quad m^*(\omega) = \begin{cases} \omega \text{ if } \omega \in [i - \sqrt{(i - x^*)^2}, i + \sqrt{(i - x^*)^2}], \\ \varnothing \text{ else}, \end{cases}$$

where $x^* \equiv E[\omega | m^*(\omega) = \varnothing]$.

Full Disclosure Equilibrium Uniqueness

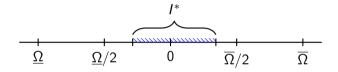
Prop.7

There exists an interval $I^* \subseteq (\underline{\Omega}/2, \overline{\Omega}/2)$ such that, for $i \notin I^*$, the unique equilibrium is full disclosure, and for $i \in I^*$, there **exist** multiple equilibria, including those with partial disclosure.

Full Disclosure Equilibrium Uniqueness

Prop.7

There exists an interval $I^* \subseteq (\underline{\Omega}/2, \overline{\Omega}/2)$ such that, for $i \notin I^*$, the unique equilibrium is full disclosure, and for $i \in I^*$, there **exist** multiple equilibria, including those with partial disclosure.

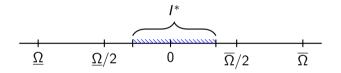


*stylized image

Full Disclosure Equilibrium Uniqueness

Prop.7

There exists an interval $I^* \subseteq (\underline{\Omega}/2, \overline{\Omega}/2)$ such that, for $i \notin I^*$, the unique equilibrium is full disclosure, and for $i \in I^*$, there **exist** multiple equilibria, including those with partial disclosure.



*stylized image

 \Rightarrow Corollary 2. When sender's and receiver's ex-ante preference are sufficiently aligned \Rightarrow there exists equilibria with partial disclosure. When sender's and receiver's ex-ante preference are sufficiently misaligned \Rightarrow FDE is unique equilibrium in the game.

Multiple Equilibria

Let X^* denote the set of all equilibrium policies selected by the Policymaker absent disclosure:

$$X^* \equiv \{x^* : x^* = E[\omega | m^*(\omega) = \varnothing]\}.$$

Order the elements of the set X^* such that when s > t, $|x_s^*| > |x_t^*| : X^* = \{x_1^*, x_2^*, \ldots\}$.

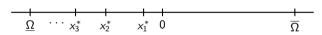
Multiple Equilibria

Let X^* denote the set of all equilibrium policies selected by the Policymaker absent disclosure:

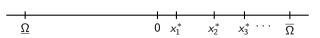
$$X^* \equiv \{x^* : x^* = E[\omega | m^*(\omega) = \varnothing]\}.$$

Order the elements of the set X^* such that when s > t, $|x_s^*| > |x_t^*| : X^* = \{x_1^*, x_2^*, \ldots\}$.

Stylized image for some $i \ge 0$:



Stylized image for some $i \le 0$:



Prop.8

All equilibrium disclosure intervals are nested:

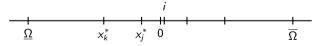
$$\forall k > j, \ [i - \sqrt{(i - x_j^*)^2}, i + \sqrt{(i - x_j^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}].$$

Prop.8

All equilibrium disclosure intervals are nested:

$$\forall k > j, \ [i - \sqrt{(i - x_j^*)^2}, i + \sqrt{(i - x_j^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}].$$

Stylized image for some $i \ge 0, k > j$:

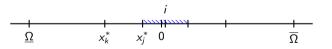


Prop.8

All equilibrium disclosure intervals are nested:

$$\forall k > j, \ [i - \sqrt{(i - x_j^*)^2}, i + \sqrt{(i - x_j^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}].$$

Stylized image for some $i \ge 0, k > j$:

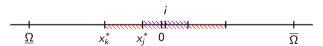


Prop.8

All equilibrium disclosure intervals are nested:

$$\forall k > j, \ [i - \sqrt{(i - x_j^*)^2}, i + \sqrt{(i - x_j^*)^2}] \subset [i - \sqrt{(i - x_k^*)^2}, i + \sqrt{(i - x_k^*)^2}].$$

Stylized image for some $i \ge 0, k > j$:



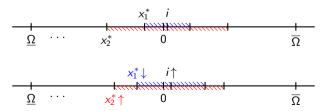
Effect of Preferences Divergence (|i|) on Equilibrium Disclosure

Prop.9

The Agency's equilibrium disclosure

- ① increases in divergence between the Agency's and the Policymaker's ex-ante preferences, |i|, in equilibria with odd-indexed policies absent disclosure;
- ② decreases in divergence between the Agency's and the Policymaker's ex-ante preferences, |i|, in equilibria with even-indexed policies absent disclosure.

Stylized image for some $i \ge 0$:



General Model: Belief Stability

Prop.10

Equilibria with odd-indexed policies absent disclosure are belief-stable. Equilibria with even-indexed policies absent disclosure are not belief-stable.

General Model: Belief Stability

Prop.10

Equilibria with odd-indexed policies absent disclosure are belief-stable. Equilibria with even-indexed policies absent disclosure are not belief-stable.

 \Rightarrow Corollary 2. Equilibria are belief-stable \Leftrightarrow equilibrium communication **improves** in preference divergence. Equilibria are not belief-stable \Leftrightarrow equilibrium communication **worsens** in preference divergence.

General Model: Some Results

- 1 There is interval bounded away from bounds of support outside which \rightarrow unique FDE.
- 2 Inside this interval multiple SE exist, including those with partial disclosure.
- Partial disclosure SE alternate in their comp. statics wrt ex-ante preference divergence.
- 4 Only SE where communication **improves** in ex-ante pref. divergence are belief-stable.

Agency's state dependence

Road Map

- Introduction
- 2 Model
- 3 Generalization
- Agency's Vagueness
- Summary

Agency's Vagueness

Let the Agency choose **precision** of its communication.

For all realizations $\omega \in \Omega$, Agency can send a message $m_S(T)$ for all T such that $\omega \in T \subseteq \Omega$.

Message $m_S(\omega)$ is most precise. Message $m_S(\Omega)$ is least precise.

After the Policymaker observes $m_S(\cdot)$, she chooses policy p.

Agency's Vagueness: Equilibrium Outcome

Let $i \ge 0$. The following can be supported in SE:

The Agency:

- sends message $m_S([x,\overline{\Omega}])$ when $\omega \in [x,\overline{\Omega}]$ and $x : \int_x^{\Omega} y \ f_{\omega}(y) dy = i$;
- discloses state and sends message $m_S(\omega)$ otherwise.

The Policymaker:

- implements policy p = i when observes $m_S([x, \overline{\Omega}])$;
- implements policy $p = \omega$ otherwise.

Agency's Vagueness: Uniform Distribution

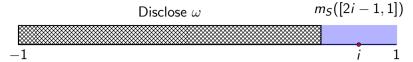
Let $\omega \sim U[-1,1]$, and $i \geq 0$.

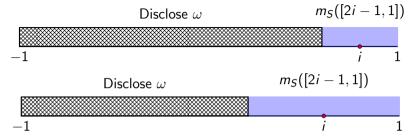
The Agency:

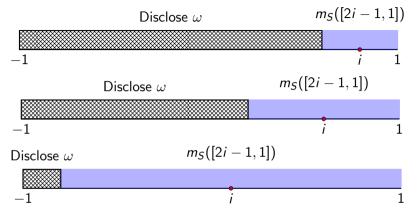
- sends message $m_S([2 \cdot i 1, 1])$ when $\omega \in [2 \cdot i 1, 1]$;
- discloses state and sends message $m_S(\omega)$ otherwise.

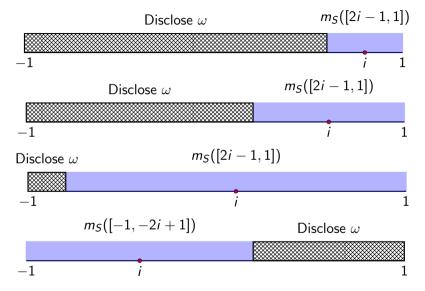
The Policymaker:

- implements policy p = i when observes $m_S([2 \cdot i 1, 1])$;
- implements policy $p = \omega$ otherwise.

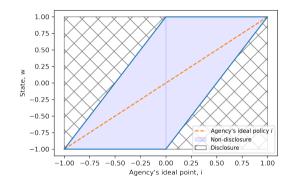




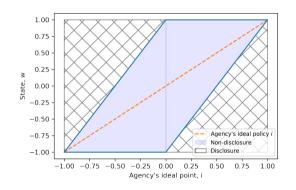




Agency's Vagueness: Generalized Disclosure



Agency's Vagueness: Generalized Disclosure



Prop.11

Communication improves in ex-ante preference divergence (|i|) between actors.

Road Map

- Introduction
- 2 Model
- Generalization
- 4 Agency's Vagueness
- Summary

- Discrete Example
- Disclosure Reward
- Agency's State-Dependence
- Extension 1: Policymaker's Bias
- Extension 2: Partial Verifiability
- Extension 3: Optimal Choice of Agency

Summary

A model of verifiable communication between a Policymaker and a Bureaucratic Agency:

- When Agency and Policymaker's ex-ante preferences are sufficiently aligned, unraveling may stop before being complete;
- ② Greater ex-ante preference divergence can encourage Agency to disclose more information;
- Equilibria where communication improves with preference divergence are belief-stable.

Road Map

- Introduction
- 2 Model
- Generalization
- 4 Agency's Vagueness
- Summary

- Discrete Example
- Disclosure Reward
- Agency's State-Dependence
- Extension 1: Policymaker's Bias
- Extension 2: Partial Verifiability
- Extension 3: Optimal Choice of Agency

Thank you!

Example: Actors and Timing

There are two strategic players: the Agency (it) and the Policymaker (she).

1	Nature determines the state of the world (ω) , all states equally likely	$\omega \in \{-A, -B, 0, B, A\}$
2	The Agency observes the state (ω)	ω
3	The Agency chooses which message (m) to send to the Policymaker	$m \in \{\omega,\varnothing\}$
4	The Policymaker observes message (m) and chooses policy (p) to implement	$p \in \mathbb{R}$

Example: Payoffs and Solution Concept

Agency:

$$u_A(p) = -(p-i)^2.$$

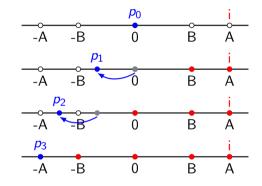
Policymaker:

$$u_P(p) = -(p-\omega)^2.$$

Solution Concept: Sequential Equilibrium.

Revelation Dynamics: Full Disclosure

- Let i = A
- The only equilibrium is one with full revelation



- Let i = B, $i \le 3 \cdot A/7$
- When Policymaker observes $m = \omega$

$$p = \omega$$

- Let i = B, $i \le 3 \cdot A/7$
- When Policymaker observes $m = \omega$

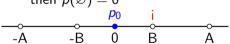
$$p = \omega$$

• Suppose $m = \emptyset$ is not informative; then $p(\emptyset) = 0$

- Let i = B, $i \le 3 \cdot A/7$
- When Policymaker observes $m = \omega$

$$p = \omega$$

• Suppose $m = \emptyset$ is not informative; then $p(\emptyset) = 0$

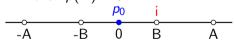


ightarrow The Agency discloses B; but then $p(\varnothing)=p_1
ightarrow$ disclose $\omega=0$

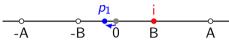
- Let i = B, $i \le 3 \cdot A/7$
- When Policymaker observes $m = \omega$

$$p = \omega$$

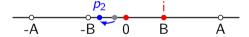
• Suppose $m = \emptyset$ is not informative; then $p(\emptyset) = 0$



ightarrow The Agency discloses B; but then $p(\varnothing) = p_1
ightarrow$ disclose $\omega = 0$



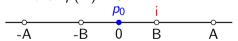
ightarrow Policymaker implements $p(\varnothing) = p_2$



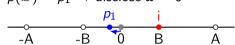
- Let i = B, $i \le 3 \cdot A/7$
- When Policymaker observes $m = \omega$

$$p = \omega$$

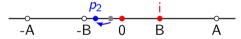
• Suppose $m = \emptyset$ is not informative; then $p(\emptyset) = 0$



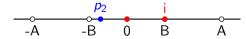
ightarrow The Agency discloses B; but then $p(\varnothing)=p_1 o$ disclose $\omega=0$



ightarrow Policymaker implements $p(\varnothing)=p_2$



ightarrow Equilibrium



Introducing Disclosure Reward, R

The Agency receives a lump sum gain R when it shares information

$$u_A(p) = \begin{cases} -(p-i)^2 + R, & m \neq \varnothing; \\ -(x-i)^2, & m = \varnothing. \end{cases}$$

Model with Reward: Equilibrium Characterization

The Policymaker implements $p^*(m) = m$, when she observes $m = \omega$.

She chooses a policy x^* otherwise.

The Agency discloses the state ω when $\omega \in [i - \sqrt{(i-x)^2 + R}, i + \sqrt{(i-x)^2 + R}]$, and conceals information otherwise.

Model with Reward: Effects on Communication

Lemma. Holding fixed Policymaker's choice absent disclosure, informativeness of communication between actors improves in R.

Model with Reward: Effects on Communication

Lemma. Holding fixed Policymaker's choice absent disclosure, informativeness of communication between actors improves in *R*.

Proposition. Communication

- improves in R in guarded equilibrium;
- deteriorates in R in expansive equilibrium;



Sequential Rationality of Reward Scheme

Assume the Policymaker can choose whether to award R to the Agency.

- In the unique payoff-dominant (for the Policymaker) equilibrium, the Policymaker never awards less than *R* for disclosure;
- In the unique payoff-dominant (for the Policymaker) equilibrium, the Policymaker always awards disclosure and never awards lack thereof.

Introducing Policymaker's Bias, b

The Policymaker wishes to implement policies co-aligned with her bias b

$$u_P(p) = -(p - \omega - b)^2$$
.

Model with Policymaker's bias: Equilibrium Characterization

The Policymaker implements $p^*(m) = m + b$, when she observes $m \neq \emptyset$.

She chooses a policy $E[\omega|m=\varnothing]+b$ otherwise.

The Agency discloses the state ω when

$$\omega \in \begin{cases} [2 \cdot (i-b) - x, x] \cap [-1, 1], \ i-b < 0; \\ [x, 2 \cdot (i-b) - x] \cap [-1, 1], \ i-b > 0, \end{cases}$$

and conceals information otherwise.

Model with Policymaker's bias: Preferences Divergence

Let us denote $d \equiv |i - b|$. d represents ex-ante preference divergence between the Policymaker and the Agency.

The Agency discloses the state ω when

$$\omega \in \begin{cases} [-2 \cdot d - x, x] \cap [-1, 1], \ i - b < 0; \\ [x, 2 \cdot d - x] \cap [-1, 1], \ i - b > 0, \end{cases}$$

and conceals information otherwise.

Model with Policymaker's Bias: Equilibria

There can be a maximum of three equilibria

- Full disclosure equilibrium;
- Partial disclosure equilibria:
 - Guarded equilibrium;
 - Expansive equilibrium.

Model with Policymaker's Bias: Comparative Statics

Communication between actors

- ① not affected by ex-ante preference divergence |d| in FDE;
- 2 improves in ex-ante divergence |d| in guarded equilibrium;
- 3 deteriorate in ex-ante divergence |d| in expansive equilibrium.

Model with Policymaker's Bias: Belief Stability

- **1** FDE is belief stable when $d \neq 0$ and not belief stable otherwise;
- Guarded equilibrium is belief stable;
- 3 Expansive equilibrium is not belief stable.

Agency's Competence: Game Modification

Companion paper: DHL 2024

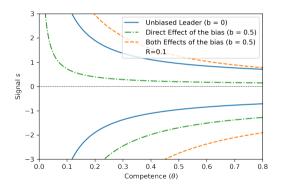
1	Nature determines the state of the world (ω)	$\omega \sim {\it N}(0,1)$
2	The Agency of known competence (θ) observes private signal (s) about the state	$egin{aligned} s &= \omega + arepsilon, \ arepsilon &\sim extstyle extstyle extstyle (0, 1/ heta) \end{aligned}$
3	The Agency chooses which message (m) to send to the Policymaker	$m \in \{s,\varnothing\}$
4	The Policymaker observes message (m) and chooses policy (a) to implement	$a \in \mathbb{R}$

Agency's Competence: Agency's Disclosure Strategy

Policymaker implements policy $a = \frac{m}{1+1/\theta} + \frac{b}{2}$, when observes informative message m.

Agency of competence $\boldsymbol{\theta}$ discloses its signal to the Policymaker if and only if

$$egin{split} s \geq -rac{\sqrt{R+d}\cdot(1+ heta)}{ heta} - b, \ & rac{ ext{and}}{ heta} \ & s \leq rac{\sqrt{R+d}\cdot(1+ heta)}{ heta} - b. \end{split}$$



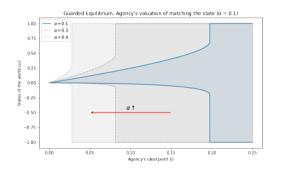
Agency:

$$u_A(p) = -(p - (1 - \alpha) \cdot i - \alpha \cdot \omega)^2$$

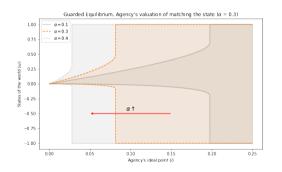
Policymaker:

$$u_P(p) = -(p - \omega)^2$$

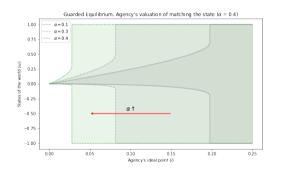
$$u_A(p) = -(p - (1 - \alpha) \cdot i - \alpha \cdot \omega)^2$$



$$u_A(p) = -(p - (1 - \alpha) \cdot i - \alpha \cdot \omega)^2$$



$$u_A(p) = -(p - (1 - \alpha) \cdot i - \alpha \cdot \omega)^2$$



Generalization of Agency's State-Dependence: Summary

$$u_A(p) = -(p - (1 - \alpha) \cdot i - \alpha \cdot \omega)^2$$

- ① Unique equilibrium is FDE when $\alpha > 1/2$.
- When $\alpha \leq 1/2$, FDE unique when $i \notin I^* \subseteq ([\frac{\Omega \cdot (1-2\alpha)}{2 \cdot (1-\alpha)}, \frac{\overline{\Omega} \cdot (1-2\alpha)}{2 \cdot (1-\alpha)}])$, not unique if $i \in I^*$.
- Equilibrium disclosure intervals are nested.
- **4** Equilibrium disclosure alternates in comparative statics wrt |i|.
- ⑤ Only those eq where communication improves in ex-ante divergence are belief-stable.

Back to Road Map Back to Generalization

Partial Verifiability

- Assume the Agency can distort information observed sending message $m \in [-1,1] \cup \{\varnothing\}$.
- With probability q the Policymaker can 'verify' this information she observes signal True when $m=\omega$ and signal False otherwise.
- With probability 1 q, the Policymaker cannot verify the Agency's message.

Partial Verifiability

- Assume the Agency can distort information observed sending message $m \in [-1,1] \cup \{\varnothing\}$.
- With probability q the Policymaker can 'verify' this information she observes signal True when $m=\omega$ and signal False otherwise.
- With probability 1 q, the Policymaker cannot verify the Agency's message.
- Back to Road Map

- When q=1, all messages are verifiable \rightarrow hard information.
- When q = 0, messages never verifiable \rightarrow cheap talk (*with sender's state-independent preferences).

Partial Verifiability: Equilibrium Characterization

Agency:

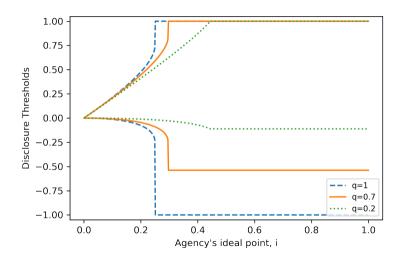
- Discloses state when $\omega \in [y, 2 \cdot i y]$;
- Distorts information to $U[y, 2 \cdot i y]$ otherwise.

Policymaker:

- Chooses policy $p = \omega$ when verifies message to be *True*;
- Chooses policy p = x when verifies message to be *False*;
- Chooses policy p = z when not able to verifies message.

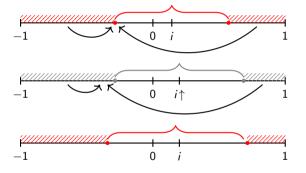
$$x=rac{i\cdot (y-i)}{1-i+y}, \qquad z=m\cdot (i-y)+x\cdot (1-i+y), \qquad y:y=q\cdot rac{i\cdot (y-i)}{1-i+y}.$$
 Back to Road Map

Partial Verifiability: Disclosure Intervals



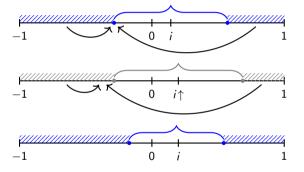
Intuition Behind Comparative Statics: Guarded

Stylized images:



Intuition Behind Comparative Statics: Expansive

Stylized images



More Stylized Examples

- Consumer Financial Protection Bureau
 - access to information that could be used contrary to its mission → re business regulations;
 - incentives to conceal.
- Internal Revenue Service
 - preferences for uniform enforcement;
 - private information re non-compliance statistical likelihood;
 - incentives to conceal from opposed policymaker.
- Central Intelligence Agency (Bay of Pigs)
 - information re conditional mission success;
 - incentives to conceal from more risk averse policymakers.
- USSR Ministry of Energy and Electrification (Chernobyl)
 - private information re nature of disaster(s);
 - incentives to limit information about disaster extent to avoid repercussions.

Optimal Choice of Agency

Assume Policymaker (receiver) has discretion over selection of Advisor (sender).

Optimal Choice of Agency

Assume Policymaker (receiver) has discretion over selection of Advisor (sender).

- Cheap-talk signaling literature → communication deteriorates in divergence;
- ullet "Ally principle" o principals delegate to co-aligned agents (Bendor and Meirowitz, 2004)

Optimal Choice of Agency

Assume Policymaker (receiver) has discretion over selection of Advisor (sender).

- ullet Cheap-talk signaling literature o communication deteriorates in divergence;
- ullet "Ally principle" o principals delegate to co-aligned agents (Bendor and Meirowitz, 2004)

This paper:

- \bullet \exists eq. with partial disclosure where comm. improves in (ex-ante) divergence (Prop.9);
- these eq. are belief stable (Prop.10);
- when preferences sufficiently misaligned \rightarrow FDE is unique (Prop.7).
- ⇒ Receiver may prefer more (ex-ante) misaligned Sender.